×

Finite element and analytical fluid-structure interaction analysis of the pneumatically actuated diaphragm microvalves. (English) Zbl 1370.74140

Summary: The fluid flow and the diaphragm deflection are studied in the pneumatically actuated diaphragm microvalve by performing finite element and analytical fluid-structure interaction simulations. The results of these approaches are compared, and their validity is discussed. An analytical relation is obtained for the critical diaphragm deflection which leads to unstable response of the microvalve. This relation shows that the critical deflection is only a function of the microvalve geometry, namely its inlet height and outlet radius. The phenomenon of the diaphragm deflection jump is justified in the microvalve behavior. The effect of different fluid flow and diaphragm parameters on the microvalve response is investigated that can be used to improve the microvalve design.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M10 Finite element methods applied to problems in fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Oh K.W., Ahn C.H.: A review of microvalves. J. Micromech. Microeng. 16, R13–R39 (2006) · doi:10.1088/0960-1317/16/5/R01
[2] Luharuka R., LeBlanc S., Bintoro J.S., Berthelot Y.H., Hesketh P.J.: Simulated and experimental dynamic response characterization of an electromagnetic microvalve. Sens. Actuators A Phys. 143, 399–408 (2008) · doi:10.1016/j.sna.2007.10.084
[3] Takao H., Miyamura K., Ebi H., Ashiki M., Sawada K., Ishida M.: A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon. Sens. Actuators A Phys. 119, 468–475 (2005) · doi:10.1016/j.sna.2004.10.023
[4] Pelesko J.A., Bernstein D.H.: Modeling MEMS and NEMS. Chapman & Hall/CRC, London (2003) · Zbl 1031.74003
[5] Yoo J.C., Choi Y.J., Kang C.J., Kim Y.S.: A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and Paraffin-actuated microvalve. Sens. Actuators A Phys. 139, 216–220 (2007) · doi:10.1016/j.sna.2007.04.056
[6] Kim J.H., Na K.H., Kang C.J., Jeon D., Kim Y.S.: A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass. Microelectron. Eng. 73(74), 864–869 (2004) · doi:10.1016/S0167-9317(04)00235-7
[7] Li H.Q., Roberts D.C., Steyn J.L., Turner K.T., Yaglioglu O., Hagood N.W., Spearing S.M., Schmidt M.A.: Fabrication of a high frequency piezoelectric microvalve. Sens. Actuators A: Phys. 111, 51–56 (2004) · doi:10.1016/j.sna.2003.10.013
[8] Roberts D.C., Li H., Steyn J.L., Yaglioglu O., Spearing S.M., Schmidt M.A., Hagood N.W.: A Piezoelectric Microvalve for Compact High-Frequency, High-Differential Pressure Hydraulic Micropumping Systems. J. Microelectromech. Syst. 2, 81–92 (2003) · doi:10.1109/JMEMS.2002.807471
[9] Kim H., In C., Yoon G., Kim J.: A slim type microvalve driven by PZT films. Sens. Actuators A: Phys. 121, 162–171 (2005) · doi:10.1016/j.sna.2004.12.005
[10] Yoshida K., Tanaka S., Hagihara Y., Tomonari S., Esashi M.: Normally closed electrostatic microvalve with pressure balance mechanism for portable fuel cell application part I: design and simulation. Sens. Actuators A: Phys. 157, 299–306 (2010) · doi:10.1016/j.sna.2009.11.029
[11] Tanaka K.Y.S, Hagihara Y., Tomonari S., Esashi M.: Normally closed electrostatic microvalve with pressure balance mechanism for portable fuel cell application. Sens. Actuators A: Phys. 157, 290–298 (2010) · doi:10.1016/j.sna.2009.11.030
[12] Gong Q., Zhou Z., Yang Y., Wang X.: Design, optimization, and simulation on microelectromagnetic pump. Sens. Actuators A 83, 200–207 (2000) · doi:10.1016/S0924-4247(99)00384-2
[13] Bintoro J.S., Hesketh P.J., Berthelot Y.H.: CMOS compatible bistable electromagnetic microvalve on a single wafer. Microelectron. J. 36, 667–672 (2005) · doi:10.1016/j.mejo.2005.04.038
[14] Vieider, C., Ohman, O., Elderstig, H.: A pneumatically actuated micro valve with silicone rubber membrane The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Sweden, 284–286(1995)
[15] Yang F., Kao I.: Analysis of fluid flow and deflection for pressure-balanced MEMS diaphragm valves. Sens. Actuators 79, 13–21 (2000) · doi:10.1016/S0924-4247(99)00243-5
[16] Wachutka, G.: Coupled-field modeling of microdevices and microsystems. In: Proceeding of the International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 2002, Germany, 9–14 (2002)
[17] Huff, M.A., Schmidt M.A.: Fabrication packaging and testing of a wafer-bonded microvalve. In: Proceedings IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 194–197 (1992)
[18] Timoshenko S.: Theory of Plates and Shells. McGraw-Hill, NY (1989) · Zbl 0780.53013
[19] Wang C.M., Reddy J.N., Lee K.H.: Shear deformable beams and plates, relationships with classical solutions. Elsevier, Amsterdam (2000) · Zbl 0963.74002
[20] White F.M.: Fluid Mechanics, 4th edn. McGraw-Hill, NY (2002)
[21] Wang C.Y.: Axisymmetrically supported heavy circular plate. Thin-Walled Structures 42, 1709–1718 (2004) · doi:10.1016/j.tws.2004.04.003
[22] Zhang Q., Hisada T.: Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput. Method. Appl. Mech. Eng. 190, 6341–6357 (2001) · Zbl 1015.74064 · doi:10.1016/S0045-7825(01)00231-6
[23] Afrasiab, H., Movahhedy, M.R., Assempour A.: Fluid–structure interaction analysis in microfluidic devices: A dimensionless finite element approach. Int. J. Numer. Meth. Fluids. doi: 10.1002/fld.2592 (2011) · Zbl 1426.76209
[24] Donea J., Huerta A.: Finite Element Methods for Flow Problems. Wiley, Chichester (2003)
[25] Belytschko T., Liu W.K., Moran B.: Nonlinear finite element for continua and structures. Wiley, NY (2000) · Zbl 0959.74001
[26] Horn, J., Turek, S.: Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow. In: Bungartz, H.J., Schafer, M. Fluid-Structure Interaction: Modelling, Simulation, Optimisation LNCSE., Springer, Berlin (2006)
[27] Stein K., Tezduyar T.E., Benney R.: Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Mech. 70, 59–63 (2003) · Zbl 1110.74689
[28] Cavallo P.A., Hosangadi A., Lee R.A., Dash S.M.: Dynamic unstructured grid methodology with application to aero/propulsive flowfields. AIAA Paper 97, 2310 (1997)
[29] Farhat C., Degand C., Koobus B., Lesoinne M.: Torsional springs for two dimensional dynamic unstructured fluid meshes. Comput. Method. Appl. Mech. Engrg. 163, 231–245 (1998) · Zbl 0961.76070 · doi:10.1016/S0045-7825(98)00016-4
[30] Gao X.W., Chen P.C., Tang L.: Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary element method. AIAA J. 40, 1512–1517 (2002) · doi:10.2514/2.1847
[31] Johnson A.A., Tezduyar T.E.: Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23, 130–143 (1999) · Zbl 0949.76049 · doi:10.1007/s004660050393
[32] Yoseph P.Z.B., Mereu S., Chippada S., Kalro V.J.: Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics. Comput. Mech. 27, 378–395 (2001) · Zbl 1142.74378 · doi:10.1007/s004660100250
[33] Nielsen E.J., Anderson W.K.: Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J. 40, 1155–1163 (2002) · doi:10.2514/2.1765
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.