×

zbMATH — the first resource for mathematics

Nonlinear sliding mode control design: an LMI approach. (English) Zbl 1370.93077
Summary: This paper presents a novel nonlinear sliding mode control methodology for systems with both matched and unmatched perturbations (including parametric uncertainties). Instead of traditional approaches where uncertainties and nonlinearities are coped with via linear nominal models and linear sliding surfaces, the proposed approach incorporates exact convex expressions to represent both the nonlinear surface and the system, thus allowing a significant chattering reduction. Moreover, thanks to the convex form of the nonlinear nominal model, when combined with the direct Lyapunov method, it leads to linear matrix inequalities, which are efficiently solved via convex optimization techniques. Illustrative examples are provided.

MSC:
93B12 Variable structure systems
93C10 Nonlinear systems in control theory
90C25 Convex programming
Software:
SeDuMi; LMI toolbox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Utkin, V., Sliding Modes in Control and Optimization, (1992), Springer Berlin, Germany · Zbl 0748.93044
[2] Bartolini, G.; Ferrara, A.; Usai, E., Chattering avoidance by second-order sliding mode control, IEEE Trans. Automat. Control, 433, 2, 241-246, (1998) · Zbl 0904.93003
[3] Boiko, I., Discontinuous Control Systems: Frequency-Domain Analysis and Design, (2009), Birkhäuser Boston, USA · Zbl 1165.93002
[4] Levant, A., Chattering analysis, IEEE Trans. Automat. Control, 55, 6, 1380-1389, (2010) · Zbl 1368.93084
[5] Edwards, C.; Spurgeon, S. K., Sliding Mode Control: Theory and Applications, (1998), Taylor and Francis London, England
[6] Yan, X.-G.; Spurgeon, S. K.; Edwards, C., Dynamic sliding mode control for a class of systems with mismatched uncertainty, Eur. J. Control, 11, 1, 1-10, (2005) · Zbl 1293.93172
[7] Ferrara, A.; Giacomini, L., First and second order sliding mode control for a class of single-input nonlinear systems with nonmatched uncertainties, IMA J. Math. Control Inform., 18, 2, 253-268, (2001) · Zbl 0979.93014
[8] Davila, J., Exact tracking using backstepping control design and high-order sliding modes, IEEE Trans. Automat. Control, 58, 8, 2077-2081, (2013) · Zbl 1369.93397
[9] Poznyak, A. S.; Shtessel, Y. B.; Gallegos, C. J., MIN-MAX sliding-mode control for multimodel linear time varying systems, IEEE Trans. Automat. Control, 48, 12, 2141-2150, (2003) · Zbl 1364.93128
[10] Cao, W. J.; Xu, J. X., Nonlinear integral-type sliding surface for both matched and unmatched uncertain sytems, IEEE Trans. Automat. Control, 49, 8, 1355-1360, (2004) · Zbl 1365.93068
[11] Levant, A., Higher-order sliding modes, differentiation and output feedback control, Internat. J. Control, 76, 9-10, 924-941, (2003) · Zbl 1049.93014
[12] J. Li, H.O. Wang, D. Niemann, K. Tanaka, Synthesis of gain-scheduled controller for a class of LPV systems, in: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 3, Phoenix, USA, 1999, pp. 2314-2319
[13] Park, P.; Choi, D. J., LPV controller design for the nonlinear RTAC system, Internat. J. Robust Nonlinear Control, 11, 14, 1343-1363, (2001) · Zbl 0996.93037
[14] Bianchi, F. D.; Mantz, R. J.; Christiansen, C. F., Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models, Control Eng. Pract., 13, 2, 247-255, (2005)
[15] Tanaka, K.; Wang, H. O., Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, (2001), John Wiley and Sons New York, USA
[16] Taniguchi, T.; Tanaka, K.; Wang, H. O., Model contruction, rule reduction and robust compensation for generalized form of Takagi-sugeno fuzzy systems, IEEE Trans. Fuzzy Syst., 9, 4, 525-538, (2001)
[17] Sala, A.; Arino, C., Polynomial fuzzy models for nonlinear control: a Taylor series approach, IEEE Trans. Fuzzy Syst., 17, 6, 1284-1295, (2009)
[18] S. Boyd, L. El Ghaoui, E. Féron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, in: Studies in Applied Mathematics, vol. 15, Philadelphia, USA, 1994
[19] Scherer, C.; Weiland, S., Linear Matrix Inequalities in Control, (2005), Dutch Institute for Systems and Control Delft, The Netherlands
[20] Gahinet, P.; Nemirovsky, A.; Laub, A. J.; Chilali, M., LMI Control Toolbox, (1995), Math Works Natick, USA
[21] Sturm, J. F., Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11, 1-4, 625-653, (1999) · Zbl 0973.90526
[22] Edwards, C., A practical method for the design of sliding mode controllers using linear matrix inequalities, Automatica, 40, 10, 1761-1769, (2004) · Zbl 1079.93014
[23] Choi, H.; Ro, K. S., LMI-based sliding-mode observer design method, IEE Proc. Control Theory Appl., 152, 1, 113-115, (2005)
[24] Choi, H., LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems, IEEE Trans. Automat. Control, 52, 4, 736-742, (2007) · Zbl 1366.93096
[25] Andrade-Da Silva, J. M; Edwards, C.; Spurgeon, S. K., Sliding-mode output-feedback control based on LMIs for plants with mismatched uncertains, IEEE Trans. Ind. Electron., 56, 9, 3675-3683, (2009)
[26] Tapia, A.; Márquez, R.; Bernal, M.; Cortez, J., Sliding subspace design based on linear matrix inequalities, Kybernetika, 50, 3, 436-449, (2014) · Zbl 1298.93110
[27] Yan, X.-G.; Spurgeon, S. K.; Edwards, C., Memoryless static output feedback sliding mode control for nonlinear systems with delayed disturbances, IEEE Trans. Automat. Control, 59, 7, 1906-1912, (2014) · Zbl 1360.93165
[28] Tuan, H. D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y., Parameterized linear matrix inequality techniques in fuzzy control systems design, IEEE Trans. Fuzzy Syst., 9, 2, 324-332, (2001)
[29] Utkin, V.; Young, K.-K., Methods for constructing discontinuity planes in multidimensional variable structure systems, Autom. Remote Control, 39, 10, 1466-1470, (1978) · Zbl 0419.93045
[30] Khalil, H. K., Nonlinear Systems, (2002), Prentice Hall New Jersey, USA · Zbl 0626.34052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.