zbMATH — the first resource for mathematics

Randomized QR with column pivoting. (English) Zbl 1371.65026

65F05 Direct numerical methods for linear systems and matrix inversion
65F20 Numerical solutions to overdetermined systems, pseudoinverses
65Y05 Parallel numerical computation
Full Text: DOI arXiv
[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in numerical linear algebra, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 866–901, . · Zbl 1246.68128
[2] C. H. Bischof, A parallel \(QR\) factorization algorithm with controlled local pivoting, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 36–57, . · Zbl 0718.65017
[3] C. H. Bischof and C. van Loan, The \(WY\) representation for products of Householder matrices, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 2–13, . · Zbl 0628.65033
[4] T. F. Chan, Rank revealing \(QR\) factorizations, Linear Algebra Appl., 88–89 (1987), pp. 67–82, .
[5] T. F. Chan and P. C. Hansen, Some applications of the rank revealing \(QR\) factorization, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 727–741, . · Zbl 0756.65032
[6] J. Demmel, L. Grigori, M. Gu, and H. Xiang, Communication Avoiding Rank Revealing \(QR\) Factorization with Column Pivoting, Tech. Report UCB/EECS-2013-46, EECS Department, University of California, Berkeley, CA, 2013, . · Zbl 1327.65078
[7] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and sequential \(QR\) and \(LU\) factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206–A239, .
[8] J. A. Duersch and M. Gu, Randomized Strong Rank-Revealing \(QR\) Factorization, Math 273 final project presentation, UC Berkeley, Berkeley, CA, 2014.
[9] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, MD, 2013, . · Zbl 1268.65037
[10] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing \(QR\) factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869, . · Zbl 0858.65044
[11] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288, . · Zbl 1269.65043
[12] D. A. Huckaby and T. F. Chan, On the convergence of Stewart’s \(QLP\) algorithm for approximating the SVD, Numer. Algorithms, 32 (2003), pp. 287–316, . · Zbl 1035.65034
[13] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference on Modern Analysis and Probability, Contemp. Math. 26, AMS, Providence, RI, 1984, pp. 189–206, . · Zbl 0539.46017
[14] A. Kovach, Differential Gear, 2016, .
[15] E. Liberty, F. Woolfe, P. Martinsson, V. Rokhlin, and M. Tygert, Randomized algorithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 20167–20172, . · Zbl 1215.65080
[16] P. G. Martinsson, Blocked Rank-Revealing \(QR\) Factorizations: How Randomized Sampling Can Be Used to Avoid Single-Vector Pivoting, preprint, , 2015.
[17] P. G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decomposition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68, . · Zbl 1210.65095
[18] G. Quintana-Ortí, X. Sun, and C. H. Bischof, A BLAS-3 version of the \(QR\) factorization with column pivoting, SIAM J. Sci. Comput., 19 (1998), pp. 1486–1494, . · Zbl 0912.65034
[19] R. Schreiber and C. van Loan, A storage-efficient \(WY\) representation for products of Householder transformations, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 53–57, . · Zbl 0664.65025
[20] G. W. Stewart, The \(QLP\) approximation to the singular value decomposition, SIAM J. Sci. Comput., 20 (1999), pp. 1336–1348, . · Zbl 0939.65062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.