×

High-performance 1-D and 2-D inverse DWT 5/3 filter architectures for efficient hardware implementation. (English) Zbl 1371.94717

Summary: This paper presents high-performance and memory-efficient hardware architectures for one-dimensional (1-D) and two-dimensional (2-D) inverse discrete wavelet transform (DWT) 5/3 filters. The proposed 1-D filter architecture requires 33% less memory resources and 17% less logic resources than the best state-of-the-art solutions. The proposed 1-D filter architecture has 100% hardware utilization, which is defined as the ratio of the actual computation time to the total processing time, both expressed in numbers of clock cycles. It allows a 7% higher operational frequency and simultaneously has the lowest total power dissipation in comparison with the best state-of-the-art solutions. The proposed 2-D inverse DWT 5/3 architecture, based on the proposed 1-D inverse DWT filter design, provides medium total computing time and output latency, but outperforms the best state-of-the-art solutions for at least 20% in terms of required memory capacity.

MSC:

94C30 Applications of design theory to circuits and networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Acharya, C. Chakrabarti, A survey on lifting-based discrete wavelet transform architectures. J. VLSI Signal Process. 42(3), 321-339 (2006) · Zbl 1104.94064 · doi:10.1007/s11266-006-4191-3
[2] T. Acharya, P.S. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures (Wiley, Hoboken, 2005) · doi:10.1002/0471745790.ch17
[3] M.D. Adams, F. Kossentini, Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Trans. Image Process. 9(6), 1010-1024 (2000) · Zbl 0962.94023 · doi:10.1109/83.846244
[4] K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Process. 50(4), 966-977 (2002) · doi:10.1109/78.992147
[5] S.M. Aziz, D.M. Pham, Efficient parallel architecture for multi-level forward discrete wavelet transform processors. Comput. Electr. Eng. 38(5), 1325-1335 (2012) · doi:10.1016/j.compeleceng.2012.05.009
[6] S. Barua, J.E. Carletta, K.A. Kotteri, A.E. Bell, An efficient architecture for lifting-based two-dimensional discrete wavelet transform. Integr. VLSI J. 38(3), 341-352 (2005) · doi:10.1016/j.vlsi.2004.07.010
[7] C. Chakrabarti, M. Vishwanath, Efficient realizations of the discrete and continuous wavelet transforms: from single chip implementations to mappings on SIMD array computers. IEEE Trans. Signal Process. 43(3), 759-771 (1995) · doi:10.1109/78.370630
[8] W.H. Chang, Y.S. Lee, W.S. Peng, C.Y. Lee, A line-based, memory efficient and programmable architecture for 2D DWT using lifting scheme. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 4, pp. 330-333
[9] C. Cheng, K.K. Parhi, High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans. Signal Process. 56(1), 393-403 (2008) · Zbl 1390.68785 · doi:10.1109/TSP.2007.900754
[10] A.D. Darji, S.S. Kushwah, S.N. Merchant, A.N. Chandorkar, High-performance hardware architectures for multi-level lifting-based discrete wavelet transform. Eurasip J. Image Video Process. 47, 1-19 (2014)
[11] G. Dillen, B. Georis, J.D. Legat, O. Cantineau, Combined line-based architecture for the 5-3 and 9-7 wavelet transform of JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 13(9), 944-950 (2003) · doi:10.1109/TCSVT.2003.816518
[12] M. Ghantous, M. Bayoumi, \[P^22\] E-DWT: a parallel and pipelined efficient VLSI architecture of 2-D discrete wavelet transform. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Rio de Janeiro, Brazil, 2011), pp. 941-944 · Zbl 0709.94650
[13] C.-H. Hsia, J.-S. Chiang, J.-M. Guo, Memory-efficient hardware architecture of 2-D dual-mode lifting-based discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 23(4), 671-683 (2012) · doi:10.1109/TCSVT.2012.2211953
[14] C.T. Huang, P.C. Tseng, L.G. Chen, Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080-1089 (2004) · Zbl 1369.94051 · doi:10.1109/TSP.2004.823509
[15] J.M. Jou, Y.H. Shiau, C.C. Liu, Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 2, pp. 529-529 · Zbl 1039.68022
[16] X. Lan, N. Zheng, Y. Liu, Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Consum. Electr. 51(2), 379-385 (2005) · doi:10.1109/TCE.2005.1467975
[17] D. Le Gall, A. Tabatabai, Subband coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In Proceedings of International Conference Acoustics, Speech, Signal Processing (ICASSP) (New York, NY, 1988), vol. 2, pp. 761-765
[18] C.J. Lian, K.F. Chen, H.H. Chen, L.G. Chen, Lifting based discrete wavelet transform architecture for JPEG2000. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 2, pp. 445-448
[19] H. Liao, M.K. Mandal, B.F. Cockburn, Efficient implementation of lifting-based discrete wavelet transform. Electron. Lett. 38(18), 1010-1012 (2002) · doi:10.1049/el:20020707
[20] H. Liao, M.K. Mandal, B.F. Cockburn, Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Trans. Signal Process. 52(5), 1315-1326 (2004) · Zbl 1370.94172 · doi:10.1109/TSP.2004.826175
[21] L. Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, H. Chen, A VLSI architecture of JPEG2000 encoder. IEEE J. Solid State Circuits 39(11), 2032-2040 (2004) · doi:10.1109/JSSC.2004.831492
[22] C.C. Liu, Y.H. Shiau, J.M. Jou, Design and implementation of a progressive image coding chip based on the lifted wavelet transform. In Proceedings of the 11th VLSI Design/CAD Symposium (Taiwan, 2000) pp. 49-52 · Zbl 1369.94051
[23] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674-693 (1989) · Zbl 0709.94650 · doi:10.1109/34.192463
[24] S.G. Mallat, Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091-2110 (1989) · doi:10.1109/29.45554
[25] F. Marino, Efficient high-speed/low-power pipelined architecture for the direct 2-D discrete wavelet transform. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(12), 1476-1491 (2000) · doi:10.1109/82.899642
[26] M. Martina, G. Masera, G. Piccinini, M. Zamboni, Novel JPEG 2000 compliant DWT and IWT VLSI implementations. J. VLSI Signal Process. 34(2), 137-153 (2003) · Zbl 1039.68022 · doi:10.1023/A:1023696430633
[27] B.K. Mohanty, P.K. Meher, Memory efficient modular VLSI architecture for highthroughput and low-latency implementation of multilevel lifting 2-D DWT. IEEE Trans. Signal Process. 59(5), 2072-2084 (2011) · Zbl 1392.68448 · doi:10.1109/TSP.2011.2109953
[28] K.K. Parhi, T. Nishitani, VLSI architectures for discrete wavelet transforms. IEEE Trans. Very Large Scale Integr. Syst. 1(2), 191-202 (1993) · doi:10.1109/92.238416
[29] G. Strang, T.Q. Nquyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Cambridge, 1996) · Zbl 1254.94002
[30] B.N. Usha, A. Chilambuchelvan, Efficient VLSI architecture for discrete wavelet transform. IJCSI 1(1), 1694-0814 (2011)
[31] P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, 1993) · Zbl 0784.93096
[32] M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, Englewood Cliffs, 1995) · Zbl 0885.94002
[33] M. Vishwanath, R.M. Owens, M.J. Irwin, VLSI architectures for the discrete wavelet transform. IEEE Trans. Circuits Syst. II 42(5), 305-316 (1995) · Zbl 0830.65148 · doi:10.1109/82.386170
[34] P.C. Wu, L.G. Chen, An efficient architecture for two-dimensional discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(4), 536-545 (2001) · doi:10.1109/76.915359
[35] B.F. Wu, C.F. Lin, A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1615-1628 (2005) · doi:10.1109/TCSVT.2005.858610
[36] C.-Y. Xiong, J.-W. Tian, J. Liu, Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme. IEEE Trans. Image Process. 16(3), 607-614 (2007) · doi:10.1109/TIP.2007.891069
[37] N.D. Zervas, G.P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, C.E. Goutis, Evaluation of design alternatives for the 2-D-discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(12), 1246-1262 (2001) · doi:10.1109/76.974679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.