×

Efficient goal-oriented global error estimators for BDF methods using discrete adjoints. (English) Zbl 1372.65206

Summary: In this paper we develop new goal-oriented global error estimators for variable multistep backward differentiation formulae (BDF) methods. These estimators use, for the first time in the context of multistep methods, discrete adjoints computed by adjoint differentiation of the nominal integration scheme. The derivation is based on the recently developed Petrov-Galerkin finite element formulation of BDF methods and their discrete adjoint schemes and makes use of the dual weighted residual methodology. Defect integrals or local truncation errors are used as local error quantities. We prove the asymptotic correctness and optimal convergence of the novel estimators for the one-step BDF method. For multistep BDF methods using a selfstarting procedure we show that the estimator with defect integrals converges but suboptimal and that its effectivity index converges to an offset value. On the other hand, the estimator with local truncation errors is again asymptotically correct and of optimal order. We confirm these results numerically. With a real-world example from chemical engineering, we give promising numerical results for the estimation accuracy in variable BDF-type methods with changing orders and stepsizes. Finally, we give a first use of the novel estimators for goal-oriented global error control of a challenging stiff test problem.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations

Software:

DAESOL-II
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zadunaisky, P., A method for the estimation of errors propagated in the numerical solution of a system of ordinary differential equations, (Proc. Intern. Astron. Union, Symposium No. 25, Vol. 1964 (1966), Academic Press: Academic Press Thessaloniki)
[2] Zadunaisky, P., On the estimation of errors propagated in the numerical integration of ordinary differential equations, Numer. Math., 27, 21-39 (1976) · Zbl 0324.65035
[3] Stetter, H., Economical global error estimation, (Willoughby, R., Stiff Differential Systems. Stiff Differential Systems, The IBM Research Symposia Series (1974), Plenum Press: Plenum Press New York), 245-258
[4] Skeel, R., Thirteen ways to estimate global error, Numer. Math., 48, 1-20 (1986) · Zbl 0562.65050
[5] Moon, K. S.; Szepessy, A.; Tempone, R.; Zouraris, G., A variational principle for adaptive approximation of ordinary differential equations, Numer. Math., 96, 131-152 (2003) · Zbl 1053.65059
[6] Logg, A., Multi-adaptive Gerlkin methods for ODEs I, SIAM J. Sci. Comput., 24, 6, 1879-1902 (2003) · Zbl 1042.65066
[7] Cao, Y.; Petzold, L., A posteriori error estimation and global error control for ordinary differential equations by the adjoint method, SIAM J. Sci. Comput., 26, 359-374 (2004) · Zbl 1075.65107
[8] Lang, J.; Verwer, J., On global error estimation and control for initial value problems, SIAM J. Sci. Comput., 29, 1460-1475 (2007) · Zbl 1145.65047
[9] Tran, L.; Berzins, M., Defect Sampling in Global Error Estimation for ODEs and Method-Of-Lines PDEs Using Adjoint Methods. SCI Technical Report UUSCI-2011-006 (2011), SCI Institute, University of Utah
[10] Collins, J.; Estep, D.; Tavener, S., A posteriori error analysis for finite element methods with projection operators as applied to explicit time integration techniques, BIT Numer. Math., 55, 4, 1017-1042 (2015) · Zbl 1332.65120
[11] Kulikov, G.; Yu, Cheap global error estimation in some Runge-Kutta pairs, IMA J. Numer. Anal., 33, 136-163 (2013) · Zbl 1271.65119
[12] Kulikov, G. Yu.; Weiner, R., A singly diagonally implicit two-step peer triple with global error control for stiff ordinary differential equations, SIAM J. Sci. Comput., 37, 3, A1593-A1613 (2015) · Zbl 1433.65122
[13] Debrabant, K.; Lang, J., On asymptotic global error estimation and control of finite difference solutions for semilinear parabolic equations, Comput. Methods Appl. Mech. Eng., 288, 110-126 (2015) · Zbl 1425.65087
[14] Simsek, G.; Wu, X.; van der Zee, K. G.; van Brummelen, E. H., Duality-based two-level error estimation for time-dependent PDEs: Application to linear and nonlinear parabolic equations, Comput. Methods Appl. Mech. Eng., 288, 83-109 (2015) · Zbl 1425.65120
[15] Cao, Y.; Li, S.; Petzold, L., Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software, J. Comput. Appl. Math., 149, 171-191 (2002) · Zbl 1013.65084
[16] Bock, H. G., Numerical treatment of inverse problems in chemical reaction kinetics, (Ebert, K.; Deuflhard, P.; Jäger, W., Modelling of Chemical Reaction Systems. Modelling of Chemical Reaction Systems, Springer Series in Chemical Physics, vol. 18 (1981), Springer), 102-125
[17] Bock, H. G.; Schlöder, J. P.; Schulz, V., Numerik großer differentiell-algebraischer gleichungen-simulation und optimierung, (Schuler, H., Prozeßsimulation (1994), VCH Verlagsgesellschaft mbH: VCH Verlagsgesellschaft mbH Weinheim), 35-80
[18] Sandu, A., Reverse Automatic Differentiation of Linear Multistep Methods, (Bischof, C.; Bücker, H.; Hovland, P.; Naumann, U.; Utke, J., Advances in Automatic Differentiation. Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, vol. 64 (2008), Springer), 1-12 · Zbl 1152.65441
[19] Beigel, D.; Mommer, M. S.; Wirsching, L.; Bock, H. G., Approximation of weak adjoints by reverse automatic differentiation of BDF methods, Numer. Math., 126, 3, 383-412 (2014) · Zbl 1293.65101
[20] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta Numer., 105-158 (1995) · Zbl 0829.65122
[22] Becker, R.; Rannacher, R., A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math., 4, 237-264 (1996) · Zbl 0868.65076
[23] Becker, R.; Rannacher, R., An optimal control approach to error estimation and mesh adaptation in finite element methods, Acta Numer., 2000, 1-101 (2001)
[24] Bangerth, W.; Rannacher, R., Adaptive Finite Element Methods for Differential Equations (2003), Birkhäuser Verlag · Zbl 1020.65058
[25] Estep, D.; Larson, M.; Williams, R., Estimating the error of numerical solutions of systems of nonlinear reaction-diffusion equations, Mem. Amer. Math. Soc., 696 (2000) · Zbl 0998.65096
[26] Giles, M.; Süli, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer., 145-236 (2002) · Zbl 1105.65350
[27] Shampine, L., Numerical Solution of Ordinary Differential Equations (1994), Chapman & Hall: Chapman & Hall New York · Zbl 0832.65063
[28] Henrici, P., Discrete Variable Methods in Ordinary Differential Equations (1962), John Wiley and Sons: John Wiley and Sons New York · Zbl 0112.34901
[29] Bock, H. G., (Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Bonner Mathematische Schriften, vol. 183 (1987), Universität Bonn) · Zbl 0622.65064
[30] Hulme, B. L., Discrete Galerkin and related one-step methods for ordinary differential equations, Math. Comput., 26, 120, 881-891 (1972) · Zbl 0272.65056
[31] Delfour, M.; Dubeau, F., Discontinuous polynomial approximations in the theory of one-step, hybrid and multistep methods for nonlinear ordinary differential equations, Math. Comput., 47, 175, 169-189 (1986) · Zbl 0633.65068
[32] Estep, D.; Stuart, A., The dynamic behavior of discontinuous Galerkin method and related difference schemes, Math. Comp., 71, 1075-1103 (2001) · Zbl 0998.65080
[33] Beigel, D., Efficient goal-oriented global error estimation for BDF-type methods using discrete adjoints (2012), Universität Heidelberg, (Ph.D. thesis) · Zbl 1260.65061
[34] Oliver, T.; Darmofal, D., Analysis of dual consistency for discontinuous Galerkin discretization of source terms, SIAM J. Num. Anal., 47, 5, 3507-3525 (2009) · Zbl 1203.65258
[35] Hartmann, R., Adjoint consistency analysis of Discontinuous Galerkin discretizations, SIAM J. Numer. Anal., 45, 2671-2696 (2007) · Zbl 1189.76341
[36] Meidner, D.; Vexler, B., Adaptive space-time finite element methods for parabolic optimization problems, SIAM J. Control Optim., 46, 1, 116-142 (2007) · Zbl 1149.65051
[37] Johnson, C., Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 4, 908-926 (1988) · Zbl 0661.65076
[38] Gear, C., Asymptotic estimation of errors and derivatives for the numerical solution of ordinary differential equations, IFIP, 74, 447-451 (1974)
[39] Eich, E., Numerische Behandlung semi-expliziter differentiell-algebraischer Gleichungssysteme vom Index I mit BDF Verfahren (1987), Universität Bonn, (Diploma thesis)
[40] Brenan, K.; Campbell, S.; Petzold, L., (Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics, vol. 14 (1996), SIAM: SIAM Philadelphia) · Zbl 0844.65058
[41] Albersmeyer, J., Adjoint based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems (2010), Ruprecht-Karls-Universität Heidelberg, (Ph.D. thesis) · Zbl 1210.65003
[42] Babuška, I.; Strouboulis, T., (The Finite Element Method and its Reliability. The Finite Element Method and its Reliability, Numerical Mathematics and Scientific Computation (2001), Oxford University Press) · Zbl 0997.74069
[43] Verfürth, R., (A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in Numerical Mathematics (1996), Wiley: Wiley Teubner) · Zbl 0853.65108
[45] Albersmeyer, J.; Bock, H. G., Sensitivity generation in an adaptive BDF-method, (Bock, H. G.; Kostina, E.; Phu, X.; Rannacher, R., Modeling, Simulation and Optimization of Complex Processes: Proceedings of the International Conference on High Performance Scientific Computing, March 6-10, 2006 (2008), Springer: Springer Hanoi, Vietnam), 15-24
[46] Calvo, M.; Grande, T.; Grigorieff, R., On the zero stability of the variable order variable stepsize BDF- formulas, Numer. Math., 57, 1, 39-50 (1990) · Zbl 0696.65077
[47] Philippe, B., Stabilité de la méthode des différentiations rétrogrades à ordre et pas variables (méthode de Gear), C. R. Acad. Sci. Paris Ser. I Math., 294, 13, 435-437 (1982) · Zbl 0483.65044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.