×

Constructing higher-dimensional nondegenerate hyperchaotic systems with multiple controllers. (English) Zbl 1373.34071


MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
34H05 Control problems involving ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barboza, R., Dynamics of a hyperchaotic Lorenz system, Int. J. Bifurcation and Chaos, 17, 4285-4294, (2007) · Zbl 1143.37309
[2] Cafagna, D.; Grassi, G., Decomposition method for studying smooth chua’s equation with application to hyperchaotic multiscroll attractors, Int. J. Bifurcation and Chaos, 17, 209-226, (2007) · Zbl 1117.37017
[3] Chen, G.; Dong, X., From Chaos to Order: Methodologies, Perspectives and Applications, (1998), World Scientific, Singapore
[4] Chen, G.; Lü, J., Dynamics of the Lorenz System Family: Analysis, Control and Synchronization, (2003), Science Press, Beijing
[5] Dieci, L.; Russell, R.; Vleck, E., On the computation of Lyapunov exponents for continuous dynamical systems, SIAM J. Numer. Anal., 3, 2477-2480, (1997)
[6] Gao, T.; Chen, Z.; Yuan, Z.; Chen, G., A hyperchaos generated from chen’s system, Int. J. Mod. Phys. C, 17, 471-478, (2006) · Zbl 1103.37020
[7] Hu, G., Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control, Int. J. Bifurcation and Chaos, 19, 651-660, (2009) · Zbl 1170.34328
[8] Kapitaniak, T.; Chua, L. O.; Zhong, G., Experimental hyperchaos in coupled chua’s circuits, IEEE Trans. Circuits Syst.-I, 41, 499-503, (1994)
[9] Li, Y.; Tang, K. S.; Chen, G., Generating hyperchaos via state feedback control, Int. J. Bifurcation and Chaos, 15, 3367-3375, (2005)
[10] Li, Y.; Tang, K. S.; Chen, G., Hyperchaos evolved from the generalized Lorenz system, Int. J. Circ. Th. Appl., 33, 235-251, (2005) · Zbl 1079.34032
[11] Li, Y.; Chen, G.; Tang, K. S., Controlling a unified chaotic system to hyperchaotic, IEEE Trans. Circuits Syst.-II, 52, 204-207, (2005)
[12] Matsumoto, T.; Chua, L. O.; Kobayashi, K., Hyperchaos: laboratory experiment and numerical confirmation, IEEE Trans. Circuits Syst., 33, 1143-1147, (1986)
[13] Oseledec, V. I., A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems, Trans. Mosc. Math. Soc., 19, 197-231, (1968) · Zbl 0236.93034
[14] Pham, V.-T.; Volos, C.; Gambuzza, L. V., A memristive hyperchaotic system without equilibrium, Sci. World J., (2014)
[15] Rech, P.; Albuquerque, H. A., A hyperchaotic Chua system, Int. J. Bifurcation and Chaos, 19, 3823-3828, (2009) · Zbl 1182.34071
[16] Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 155-157, (1979) · Zbl 0996.37502
[17] Shen, C.; Yu, S.; Lü, J.; Chen, G., Designing hyperchaotic systems with desired number of positive Lyapunov exponents via a simple model, IEEE Trans. Circuits Syst.-I, 61, 2380-2389, (2014)
[18] Shen, C.; Yu, S.; Lü, J.; Chen, G., A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation, IEEE Trans. Circuits Syst.-I, 61, 854-864, (2014)
[19] Shen, C.; Yu, S.; Lü, J.; Chen, G., Constructing hyperchaotic systems at will, Int. J. Circ. Th. Appl., 43, 2039-2056, (2015)
[20] Silva, C. P., Shilnikov’s theorem — A tutorial, IEEE Trans. Circuits Syst.-I, 40, 675-682, (1993) · Zbl 0850.93352
[21] Strang, G., Linear Algebra and Its Applications, (2006), Thomson, San Diego, CA
[22] Thamilmaran, K.; Lakshmanan, M.; Venkatesan, A., Hyperchaos in a modified canonical chua’s circuit, Int. J. Bifurcation and Chaos, 14, 221-243, (2004) · Zbl 1067.94597
[23] Wang, J.; Chen, Z., A novel hyperchaotic system and its complex dynamics, Int. J. Bifurcation and Chaos, 18, 3309-3324, (2008) · Zbl 1165.34355
[24] Wang, Z.; Cang, S.; Ochola, E. O.; Sun, Y., A hyperchaotic system without equilibrium, Nonlin. Dyn., 69, 531-537, (2012)
[25] Yalcin, M. E.; Suykens, J. A. K.; Vandewalle, J., Hyperchaotic \(n\)-scroll attractors, Proc. IEEE Workshop Nonlin. Dyn. Electron. Syst., (2000), Catania, Italy
[26] Yalcin, M. E.; Suykens, J. A. K.; Vandewalle, J.; Özoguz, S., Families of scroll grid attractors, Int. J. Bifurcation and Chaos, 12, 23-41, (2002) · Zbl 1044.37029
[27] Yalcin, M. E.; Suykens, J. A. K.; Vandewalle, J., Cellular Neural Networks, Multi-Scroll Chaos and Synchronization, (2005), World Scientific, Singapore · Zbl 1089.68117
[28] Yu, S.; Chen, G., Anti-control of continuous-time dynamical systems, Commun. Nonlin. Sci. Numer. Simul., 17, 2617-2627, (2012) · Zbl 1248.93083
[29] Yu, S.; Lü, J.; Chen, G.; Yu, X., Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops, IEEE Trans. Circuits Syst.-I, 59, 1015-1028, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.