×

zbMATH — the first resource for mathematics

An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems. (English) Zbl 1373.35329
Summary: The fully discrete adjoint equations and the corresponding adjoint method are derived for a globally high-order accurate discretization of conservation laws on parametrized, deforming domains. The conservation law on the deforming domain is transformed into one on a fixed reference domain by the introduction of a time-dependent mapping that encapsulates the domain deformation and parametrization, resulting in an arbitrary Lagrangian-Eulerian form of the governing equations. A high-order discontinuous Galerkin method is used to discretize the transformed equation in space and a high-order diagonally implicit Runge-Kutta scheme is used for the temporal discretization. Quantities of interest that take the form of space-time integrals are discretized in a solver-consistent manner. The corresponding fully discrete adjoint method is used to compute exact gradients of quantities of interest along the manifold of solutions of the fully discrete conservation law. These quantities of interest and their gradients are used in the context of gradient-based PDE-constrained optimization. The adjoint method is used to solve two optimal shape and control problems governed by the isentropic, compressible Navier-Stokes equations. The first optimization problem seeks the energetically optimal trajectory of a 2D airfoil given a required initial and final spatial position. The optimization solver, driven by gradients computed via the adjoint method, reduced the total energy required to complete the specified mission nearly an order of magnitude. The second optimization problem seeks the energetically optimal flapping motion and time-morphed geometry of a 2D airfoil given an equality constraint on the \(x\)-directed impulse generated on the airfoil. The optimization solver satisfied the impulse constraint to greater than 8 digits of accuracy and reduced the required energy between a factor of 2 and 10, depending on the value of the impulse constraint, as compared to the nominal configuration.

MSC:
35Q93 PDEs in connection with control and optimization
93C20 Control/observation systems governed by partial differential equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Newman, J. C.; Taylor, A. C.; Barnwell, R. W.; Newman, P. A.; Hou, G. J.-W., Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations, J. Aircr., 36, 1, 87-96, (1999)
[2] Nadarajah, S.; Jameson, A., A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization, (AIAA Paper, vol. 667, (2000)), 2000
[3] Giles, M. B.; Duta, M. C.; Müller, J.-D.; Pierce, N. A., Algorithm developments for discrete adjoint methods, AIAA J., 41, 2, 198-205, (2003)
[4] Mavriplis, D. J., Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes, AIAA J., 45, 4, 741-750, (2007)
[5] Mader, C. A.; Martins, J. R.A.; Alonso, J. J.; Der Weide, E. V., Adjoint: an approach for the rapid development of discrete adjoint solvers, AIAA J., 46, 4, 863-873, (2008)
[6] Orozco, C. E.; Ghattas, O., Massively parallel aerodynamic shape optimization, Comput. Syst. Eng., 3, 1, 311-320, (1992)
[7] Reuther, J.; Alonso, J.; Rimlinger, M. J.; Jameson, A., Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers, Comput. Fluids, 28, 4, 675-700, (1999) · Zbl 0983.76077
[8] Ghattas, O.; Bark, J.-H., Optimal control of two- and three-dimensional incompressible Navier-Stokes flows, J. Comput. Phys., 136, 2, 231-244, (1997) · Zbl 0893.76067
[9] He, B.; Ghattas, O.; Antaki, J. F., Computational strategies for shape optimization of time-dependent Navier-Stokes flows, (1997), Engineering Design Research Center, Carnegie Mellon Univ., TR-CMU-CML-97-102
[10] Yamaleev, N.; Diskin, B.; Nielsen, E., Adjoint-based methodology for time-dependent optimization, (12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (2008), American Institute of Aeronautics and Astronautics)
[11] Platzer, M. F.; Jones, K. D.; Young, J.; Lai, J. S., Flapping wing aerodynamics: progress and challenges, AIAA J., 46, 9, 2136-2149, (2008)
[12] Wang, Z.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845, (2013)
[13] Mani, K.; Mavriplis, D. J., Unsteady discrete adjoint formulation for two-dimensional flow problems with deforming meshes, AIAA J., 46, 1351-1364, (2008), 2015/06/22
[14] Zahr, M. J.; Persson, P.-O., Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretizations of the Navier-Stokes equations, (21st AIAA Computational Fluid Dynamics Conference, (2013), American Institute of Aeronautics and Astronautics)
[15] Gill, P. E.; Murray, W.; Wright, M. H., Practical optimization, (1981) · Zbl 0503.90062
[16] Heinkenschloss, M.; Vicente, L. N., Analysis of inexact trust-region interior-point SQP algorithms, (1995), Department of Computational and Applied Mathematics, Rice University, TR95-18
[17] Persson, P.-O.; Bonet, J.; Peraire, J., Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains, Comput. Methods Appl. Mech. Eng., 198, 17, 1585-1595, (2009) · Zbl 1227.76038
[18] Nadarajah, S. K.; Jameson, A., Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint method, AIAA J., 45, 7, 1478-1491, (2007)
[19] Nielsen, E. J.; Diskin, B.; Yamaleev, N. K., Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids, AIAA J., 48, 6, 1195-1206, (2010)
[20] Fidkowski, K.; Roe, P., An entropy adjoint approach to mesh refinement, SIAM J. Sci. Comput., 32, 3, 1261-1287, (2010) · Zbl 1213.65142
[21] Fidkowski, K. J., Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection-dominated flows, Int. J. Numer. Methods Eng., 88, 12, 1297-1322, (2011) · Zbl 1242.76119
[22] van Schrojenstein Lantman, M. P.; Fidkowski, K., Adjoint-based optimization of flapping kinematics in viscous flows, (21st AIAA Computational Fluid Dynamics Conference, (2013))
[23] Kast, S. M.; Fidkowski, K. J., Output-based mesh adaptation for high order Navier-Stokes simulations on deformable domains, J. Comput. Phys., 252, 468-494, (2013) · Zbl 1349.76058
[24] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff odes, SIAM J. Numer. Anal., 14, 6, 1006-1021, (1977) · Zbl 0374.65038
[25] Mishra, A.; Mani, K.; Mavriplis, D.; Sitaraman, J., Time dependent adjoint-based optimization for coupled fluid-structure problems, J. Comput. Phys., 292, 253-271, (2015) · Zbl 1349.76061
[26] Sandu, A., On the properties of Runge-Kutta discrete adjoints, (Computational Science—ICCS 2006, (2006), Springer), 550-557 · Zbl 1157.65421
[27] Joslin, R.; Gunzburger, M.; Nicolaides, R.; Erlebacher, G.; Hussaini, M., Self-contained automated methodology for optimal flow control, AIAA J., 35, 5, 816-824, (1997) · Zbl 0901.76067
[28] Hager, W. W., Runge-Kutta methods in optimal control and the transformed adjoint system, 87, 2, 247-282, (2000) · Zbl 0991.49020
[29] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[30] Hartmann, R., Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J. Numer. Anal., 45, 6, 2671-2696, (2007) · Zbl 1189.76341
[31] Hartmann, R.; Leicht, T., Generalized adjoint consistent treatment of wall boundary conditions for compressible flows, J. Comput. Phys., 300, 754-778, (2015) · Zbl 1349.76215
[32] Houston, P.; Süli, E., Hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems, SIAM J. Sci. Comput., 23, 4, 1226-1252, (2001) · Zbl 1029.65130
[33] Harriman, K.; Houston, P.; Senior, B.; Süli, E., hp-version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form, (Shu, C.-W.; Tang, T.; Cheng, S.-Y., Recent Advances in Scientific Computing and Partial Differential Equations, Contemporary Mathematics, vol. 330, (2003), AMS), 89-119 · Zbl 1037.65117
[34] Harriman, K.; Gavaghan, D.; Süli, E., The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method, (2004), Oxford University Computing Laboratory, na-04/18
[35] Imam, M. H., Three-dimensional shape optimization, Int. J. Numer. Methods Eng., 18, 5, 661-673, (1982) · Zbl 0482.73071
[36] Samareh, J. A., A survey of shape parameterization techniques, (NASA Conference Publication, (1999)), 333-344, Citeseer
[37] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. Struct., 80, 3, 305-316, (2002)
[38] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174, 2, 669-694, (2001) · Zbl 1157.76372
[39] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261, (2001) · Zbl 1065.76135
[40] Jones, M.; Yamaleev, N. K., Adjoint based shape and kinematics optimization of flapping wing propulsive efficiency, (43rd AIAA Fluid Dynamics Conference, San Diego, CA, 2013, (2013)), AIAA 2013-2472
[41] Persson, P.-O., Scalable parallel Newton-Krylov solvers for discontinuous Galerkin discretizations, (47th AIAA Aerospace Sciences Meeting, (2009)), AIAA-2009-606
[42] Yamaleev, N. K.; Diskin, B.; Nielsen, E. J., Local-in-time adjoint-based method for design optimization of unsteady flows, J. Comput. Phys., 229, 14, 5394-5407, (2010) · Zbl 1346.76039
[43] Charpentier, I., Checkpointing schemes for adjoint codes: application to the meteorological model meso-NH, SIAM J. Sci. Comput., 22, 6, 2135-2151, (2001) · Zbl 0989.86003
[44] Heimbach, P.; Hill, C.; Giering, R., An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation, Future Gener. Comput. Syst., 21, 8, 1356-1371, (2005)
[45] Heuveline, V.; Walther, A., Online checkpointing for parallel adjoint computation in PDEs: application to goal-oriented adaptivity and flow control, (Euro-Par 2006 Parallel Processing, (2006), Springer), 689-699
[46] Peraire, J.; Persson, P.-O., The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 4, 1806-1824, (2008) · Zbl 1167.65436
[47] Zahr, M. J.; Carlberg, K.; Amsallem, D.; Farhat, C., Comparison of model reduction techniques on high-fidelity linear and nonlinear electrical, mechanical, and biological systems, (2010), University of California Berkeley, Tech. rep.
[48] Zahr, M. J.; Farhat, C., Progressive construction of a parametric reduced-order model for PDE-constrained optimization, Int. J. Numer. Methods Eng., 102, 5, 1111-1135, (2015) · Zbl 1352.49029
[49] Lin, C.-K., On the incompressible limit of the compressible Navier-Stokes equations, Commun. Partial Differ. Equ., 20, 3-4, 677-707, (1995) · Zbl 0816.35105
[50] Desjardins, B.; Grenier, E.; Lions, P.-L.; Masmoudi, N., Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78, 5, 461-471, (1999) · Zbl 0992.35067
[51] Froehle, B. M., High-order discontinuous Galerkin fluid-structure interaction methods, (2013), University of California Berkeley
[52] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372, (1981) · Zbl 0474.65066
[53] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw., 23, 4, 550-560, (1997) · Zbl 0912.65057
[54] Zahr, M. J.; Persson, P.-O.; Wilkening, J., A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints, Comput. FluidsSpecial Issue on USNCCM13 International Symposium on Spectral and High-Order Methods, (2016) · Zbl 1390.76380
[55] Supekar, A. H., Design, analysis and development of a morphable wing structure for unmanned aerial vehicle performance augmentation, (2007), ProQuest
[56] Ho, S.; Nassef, H.; Pornsinsirirak, N.; Tai, Y.-C.; Ho, C.-M., Unsteady aerodynamics and flow control for flapping wing flyers, Prog. Aerosp. Sci., 39, 8, 635-681, (2003)
[57] Stanford, B. K.; Beran, P. S., Analytical sensitivity analysis of an unsteady vortex-lattice method for flapping-wing optimization, J. Aircr., 47, 2, 647-662, (2010)
[58] Ghommem, M.; Hajj, M. R.; Mook, D. T.; Stanford, B. K.; Beran, P. S.; Snyder, R. D.; Watson, L. T., Global optimization of actively morphing flapping wings, J. Fluids Struct., 33, 210-228, (2012)
[59] Gill, P. E.; Murray, W.; Saunders, M. A., SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM J. Optim., 12, 4, 979-1006, (2002) · Zbl 1027.90111
[60] Tuncer, I. H.; Kaya, M., Optimization of flapping airfoils for maximum thrust and propulsive efficiency, AIAA J., 43, 11, 2329-2336, (2005)
[61] Ramamurti, R.; Sandberg, W., Simulation of flow about flapping airfoils using finite element incompressible flow solver, AIAA J., 39, 2, 253-260, (2001)
[62] Oyama, A.; Okabe, Y.; Shimoyama, K.; Fujii, K., Aerodynamic multiobjective design exploration of a flapping airfoil using a Navier-Stokes solver, J. Aerosp. Comput. Inf. Commun., 6, 3, 256-270, (2009)
[63] Froehle, B.; Persson, P.-O., High-order accurate fluid-structure simulation of a tuning fork, Comput. Fluids, 98, 230-238, (2014) · Zbl 1391.76689
[64] Wang, Q.; Hu, R.; Blonigan, P., Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations, J. Comput. Phys., 267, 210-224, (2014) · Zbl 1349.37082
[65] Nocedal, J.; Wright, S., Numerical optimization, Series in Operations Research and Financial Engineering, (2006), Springer · Zbl 1104.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.