×

Homogenization and materials design of anisotropic multiphase linear elastic materials using central model functions. (English) Zbl 1373.74084

Summary: It is shown in the present work that for linear elastic multiphase materials the orientation average of a stiffness tensor can be given in a closed form if central model functions are taken into consideration for the description of the material orientation distribution. This holds for arbitrary numbers of material constituents and for arbitrary degree of anisotropy of any of the constituents. The first-order bounds of Voigt and Reuss, the geometric average of Aleksandrov and Aisenberg and, specifically, the Hashin-Shtrikman bounds are given in closed forms depending on the single crystal stiffnesses of the material constituents, on their volume fractions and, for elasticity, on a central orientation and two scalar parameters per central model function. The central orientation and the two scalar parameters, referred to as texture eigenvalues in the present work, reflect the complete influence of the corresponding central model function on the elastic properties. The set of all admissible texture eigenvalues is derived. The closed form expressions can be used, e.g., for efficient and low dimensional homogenization procedures taking the crystallographic texture into account or, e.g., for the determination of estimates for unknown single crystal behavior. It is further shown, that central crystallite orientation distributions exist which conserve the anisotropy of the single crystal behavior but invert the direction of the anisotropy. The closed form expressions documented in the present work are used for an exemplary materials design problem in order to determine favorable volume fractions and texture eigenvalues for the orientation distributions of considered constituents for given prescribed anisotropic properties.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74Q20 Bounds on effective properties in solid mechanics
74P05 Compliance or weight optimization in solid mechanics
15A72 Vector and tensor algebra, theory of invariants
15A21 Canonical forms, reductions, classification
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Böhlke, T., Lobos, M.: Representation of Hashin-Shtrikman bounds of cubic crystal aggregates in terms of texture coefficients with application in materials design. Acta Mater. 67, 324-334 (2014)
[2] Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81-108 (1996) · Zbl 0876.73008
[3] Kocks, U., Tomé, C., Wenk, H.: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press, Cambridge (2000) · Zbl 0946.74002
[4] Kröner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids 25(2), 137-155 (1977) · Zbl 0359.73020
[5] Lobos, M., Böhlke, T.: Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds. Int. J. Mech. Mater. Des. 11(1), 59-78 (2015)
[6] Lobos, M., Böhlke, T.: On optimal zeroth-order bounds of linear elastic properties of multiphase materials and application in materials design. Int. J. Solids Struct. 84, 40-48 (2016)
[7] Lobos, M., Yuzbasioglu, T., Böhlke, T.: Materials design of elastic properties of multiphase polycrystalline composites using model functions. PAMM 15(1), 459-460 (2015)
[8] Lobos, M.; Yuzbasioglu, T.; Böhlke, T., Robust materials design of anisotropic elastic properties of polycrystalline composites, 158-161 (2015)
[9] Lücke, K., Pospiech, J., Virnich, K., Jura, J.: On the problem of the reproduction of the true orientation distribution from pole figures. Acta Metall. 29(1), 167-185 (1981)
[10] Man, C.S., Huang, M.: A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J. Elast. 105(1-2), 29-48 (2011) · Zbl 1320.74031
[11] Man, C.S., Huang, M.: A representation theorem for material tensors of weakly-textured polycrystals and its applications in elasticity. J. Elast. 106(1), 1-42 (2012) · Zbl 1334.74026
[12] Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, New York (2008) · Zbl 0935.62065
[13] Matthies, S., Muller, J., Vinel, G.: On the normal distribution in the orientation space. Textures Microstruct. 10(C), 77-96 (1988)
[14] Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43(1), 15-41 (1990) · Zbl 0698.73002
[15] Morawiec, A.: Orientations and Rotations: Computations in Crystallographic Textures (2004) · Zbl 1084.74002
[16] Nadeau, J., Ferrari, M.: On optimal zeroth-order bounds with application to Hashin-Shtrikman bounds and anisotropy parameters. Int. J. Solids Struct. 38(44-45), 7945-7965 (2001) · Zbl 1032.74048
[17] Paroni, R.: Optimal bounds on texture coefficients. J. Elast. 60(1), 19-34 (2000) · Zbl 0976.74014
[18] Phan-Thien, N., Antonia, R.: Isotropic Cartesian tensors of arbitrary even orders and velocity gradient correlation functions. Phys. Fluids 6(12), 3818-3822 (1994) · Zbl 0832.76042
[19] Proust, G., Kalidindi, S.R.: Procedures for construction of anisotropic elastic-plastic property closures for face-centered cubic polycrystals using first-order bounding relations. J. Mech. Phys. Solids 54(8), 1744-1762 (2006) · Zbl 1120.74399
[20] Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9, 49-58 (1929) · JFM 55.1110.02
[21] Schaeben, H.: Parameterizations and probability distributions of orientations. Textures Microstruct. 13(1), 51-54 (1990)
[22] Schaeben, H.: “Normal” orientation distributions. Textures Microstruct. 19(4), 197-202 (1992)
[23] Schaeben, H.: A unified view of methods to resolve the inverse problem of texture goniometry. Textures Microstruct. 25(2-4), 171-181 (1996)
[24] Schaeben, H., van den Boogaart, K.G.: Spherical harmonics in texture analysis. Tectonophysics 370(1-4), 253-268 (2003)
[25] Schwartz, A.J., Kumar, M., Adams, B.L., Field, D.P.: Electron Backscatter Diffraction in Materials Science, 2nd edn. Springer, Berlin (2009)
[26] Siegesmund, S., Helming, K., Kruse, R.: Complete texture analysis of a deformed amphibolite: comparison between neutron diffraction and U-stage data. J. Struct. Geol. 16(1), 131-142 (1994)
[27] Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, Berlin (2002) · Zbl 0988.74001
[28] Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Teubner, Leipzig (1910) · JFM 54.0929.03
[29] Wassermann, G., Grewen, J.: Texturen metallischer Werkstoffe, 2nd edn. Springer, Berlin, Heidelberg (1962)
[30] Willis, J.R.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25(3), 185-202 (1977) · Zbl 0363.73014
[31] Zheng, Q.S., Fu, Y.B.: Orientation distribution functions for microstructures of heterogeneous materials (II)—crystal distribution functions and irreducible tensors restricted by various material symmetries. Appl. Math. Mech. 22(8), 885-903 (2001) · Zbl 1021.74006
[32] Zheng, Q.S., Zou, W.N.: Orientation distribution functions for microstructures of heterogeneous materials (I)—directional distribution functions and irreducible tensors. Appl. Math. Mech. 22(8), 865-884 (2001) · Zbl 1021.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.