zbMATH — the first resource for mathematics

A blended continuous-discontinuous finite element method for solving the multi-fluid plasma model. (English) Zbl 1373.76103
Summary: The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutral physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the blended finite element method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Shumlak, U.; Loverich, J., Approximate Riemann solver for the two-fluid plasma model, J. Comput. Phys., 187, 620-638, (2003) · Zbl 1061.76526
[2] Srinivasan, B.; Shumlak, U., Analytical and computational study of the ideal full two-fluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics, Phys. Plasmas, 18, 9, (2011)
[3] Freidberg, J. P., Ideal magnetohydrodynamic theory of magnetic fusion systems, Rev. Mod. Phys., 54, 3, 801-902, (1982)
[4] Shumlak, U.; Lilly, R.; Reddell, N.; Sousa, E.; Srinivasan, B., Advanced physics calculations using a multi-fluid plasma model, Comput. Phys. Commun., 182, 9, 1767-1770, (2011)
[5] Meier, E. T.; Shumlak, U., A general nonlinear fluid model for reacting plasma-neutral mixtures, Phys. Plasmas, 19, 7, (2012)
[6] LeVeque, R. J., Finite volume methods for hyperbolic problems, (2002), Cambridge University Press · Zbl 1010.65040
[7] Barth, T.; Ohlberger, M., Finite volume methods: foundation and analysis, (2004), John Wiley & Sons, Ltd
[8] Colella, P.; Dorr, M.; Hittinger, J.; Martin, D.; McCorquodale, P., High-order finite-volume adaptive methods on locally rectangular grids, J. Phys., 180, (2009)
[9] Jardin, S. C., A triangular finite element with first-derivative continuity applied to fusion MHD applications, J. Comput. Phys., 200, 1, 133-152, (2004) · Zbl 1288.76043
[10] Sovinec, C.; Glasser, A.; Gianakon, T.; Barnes, D.; Nebel, R.; Kruger, S.; Schnack, D.; Plimpton, S.; Tarditi, A.; Chu, M., Nonlinear magnetohydrodynamics simulation using high-order finite elements, J. Comput. Phys., 195, 1, 355-386, (2004) · Zbl 1087.76070
[11] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element for conservation laws II - general framework, Math. Comput., 52, 186, 411-435, (1989) · Zbl 0662.65083
[12] Li, F.; Xu, L.; Yakovlev, S., Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys., 230, 12, 4828-4847, (2011) · Zbl 1416.76117
[13] Wheatley, V.; Kumar, H.; Huguenot, P., On the role of Riemann solvers in discontinuous Galerkin methods for magnetohydrodynamics, J. Comput. Phys., 229, 3, 660-680, (2010) · Zbl 1253.76133
[14] Srinivasan, B.; Hakim, A.; Shumlak, U., Numerical methods for two-fluid dispersive fast MHD phenomena, Commun. Comput. Phys., 10, 1, 183-215, (2011) · Zbl 1364.76120
[15] Brackbill, J. U.; Pracht, W. E., An implicit, almost-Lagrangian algorithm for magnetohydrodynamics, J. Comput. Phys., 13, 455, (1973) · Zbl 0288.76050
[16] Peterkin, R. E.; Frese, M. H.; Sovinec, C. R., Transport of magnetic flux in an arbitrary coordinate ALE code, J. Comput. Phys., 140, 1, 148-171, (1998) · Zbl 0905.76060
[17] Shumlak, U.; Hussey, T. W.; Peterkin, R. E., Three-dimensional magnetic field enhancement in a liner implosion system, IEEE Trans. Plasma Sci., 23, 1, 83-88, (1995)
[18] Hakim, A.; Loverich, J.; Shumlak, U., A high resolution wave propagation scheme for ideal two-fluid plasma equations, J. Comput. Phys., 219, 418-442, (2006) · Zbl 1167.76384
[19] Murphy, N.; Young, A.; Shen, C.; Lin, J.; Ni, L., The plasmoid instability during asymmetric inflow magnetic reconnection, Phys. Plasmas, 20, 6, (2013)
[20] Izzo, V. A., Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D, Phys. Plasmas, 20, 5, (2013)
[21] Slough, J.; Milroy, R., High flux FRC facility for stability and confinement studies, J. Fusion Energy, 29, 6, 567-570, (2010)
[22] Macnab, A. I.; Woodruff, S., Extended MHD simulations of the compression and stability of spheromaks for current drive, J. Fusion Energy, 28, 2, 183-186, (2009)
[23] Zienkiewics, O. C.; Taylor, R. L.; Nithiarasu, P., The finite element method for fluid dynamics, (2014), Elsevier
[24] Jardin, S.; Breslau, J.; Ferraro, N., A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comput. Phys., 226, 2, 2146-2174, (2007) · Zbl 1388.76442
[25] Chacón, L.; Knoll, D.; Finn, J., An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys., 178, 1, 15-36, (2002) · Zbl 1139.76328
[26] Reed, H. W.; Hill, T. R., Triangular mesh methods for the neutron transport equation, (1973), Los Alamos Scientific Laboratory Report LA-UR-73-479
[27] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, (1997) · Zbl 0871.76040
[28] Bassi, F.; Botti, L.; Colombo, A.; Rebay, S., Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, Comput. Fluids, 61, 77-85, (2012) · Zbl 1365.76109
[29] Ferrer, E.; Willden, R., A high-order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 1, 224-230, (2011) · Zbl 1431.76011
[30] Birken, P.; Gassner, G.; Haas, M.; Munz, C.-D., Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations, J. Comput. Phys., 240, 20-35, (2013) · Zbl 1426.76520
[31] Warburton, T.; Karniadakis, G., A discontinuous Galerkin method for the viscous MHD equations, J. Comput. Phys., 152, 2, 608-641, (1999) · Zbl 0954.76051
[32] Rossmanith, J. A.; Seal, D. C., A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys., 230, 16, 6203-6232, (2011) · Zbl 1419.76506
[33] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261, (2001) · Zbl 1065.76135
[34] Shumlak, U.; Lilly, R.; Reddell, N.; Sousa, E.; Srinivasan, B., Advanced physics calculations using a multi-fluid plasma model, Comput. Phys. Commun., 18, 1767-1770, (2011)
[35] Srinivasan, B., Numerical methods for 3-dimensional magnetic confinement configurations using two-fluid plasma equations, (2010), University of Washington, Ph.D. thesis
[36] Ascher, U.; Ruuth, S.; Spiteri, R., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151-167, (1997) · Zbl 0896.65061
[37] Kanevsky, A.; Carpenter, M.; Gottlieb, D.; Hesthaven, J., Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes, J. Comput. Phys., 225, 1753-1781, (2007) · Zbl 1123.65097
[38] Haines, M. G., A review of the dense Z-pinch, Plasma Phys. Control. Fusion, 53, 9, (2011)
[39] Hirshman, S.; Sigmar, D., Neoclassical transport of impurities in tokamak plasmas, Nucl. Fusion, 21, 9, 1079, (1981)
[40] Helander, P.; Beidler, C. D.; Bird, T. M.; Drevlak, M.; Feng, Y.; Hatzky, R.; Jenko, F.; Kleiber, R.; Proll, J. H.E.; Turkin, Y.; Xanthopoulos, P., Stellarator and tokamak plasmas: a comparison, Plasma Phys. Control. Fusion, 54, 12, (2012)
[41] Lindl, J. D.; Amendt, P.; Berger, R. L.; Glendinning, S. G.; Glenzer, S. H.; Haan, S. W.; Kauffman, R. L.; Landen, O. L.; Suter, L. J., The physics basis for ignition using indirect-drive targets on the national ignition facility, Phys. Plasmas, 11, 339, (2004)
[42] Bellei, C.; Amendt, P. A.; Wilks, S. C.; Haines, M. G.; Casey, D. T.; Li, C. K.; Petrasso, R.; Welch, D. R., Species separation in inertial confinement fusion fuels, Phys. Plasmas, 20, (2013)
[43] Munz, C.; Omnes, P.; Schneider, R.; Sonnendruer, E.; Voss, U., Divergence correction techniques for Maxwell solvers based in a hyperbolic model, J. Comput. Phys., 161, 484-511, (2000) · Zbl 0970.78010
[44] Sousa, E. M., A blended finite element method for multi-fluid plasma modeling, (2014), University of Washington Seattle, WA 98195, Ph.D. thesis
[45] Reddy, J. N., An introduction to the finite element method, (2006), McGraw-Hill
[46] Griffiths, D. F.; Higham, D. J., Numerical methods for ordinary differential equations, (2010), Springer · Zbl 1209.65070
[47] Crank, J.; Nicolson, P., A partial method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math., 6, 207-226, (1996) · Zbl 0866.65054
[48] Ypma, T. J., Historical development of the Newton-raphson method, SIAM Rev., 37, 4, 531-551, (1995) · Zbl 0842.01005
[49] Loverich, J.; Shumlak, U., A discontinuous Galerkin method for the full two-fluid plasma model, Comput. Phys. Commun., 169, 1-3, 251-255, (2005) · Zbl 1196.76039
[50] Loverich, J.; Hakim, A.; Shumlak, U., A discontinuous Galerkin method for ideal two-fluid plasma equations, Commun. Comput. Phys., 9, 2, 240-268, (2011) · Zbl 1364.35278
[51] Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357, (1981) · Zbl 0474.65066
[52] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2008), Springer · Zbl 1134.65068
[53] Baboolal, S., Finite-difference modeling of solitons induced by a density hump in a plasma multi-fluid, Math. Comput. Simul., 55, 309-316, (2001) · Zbl 0987.76065
[54] Birn, J.; Drake, J. F.; Shay, M. A.; Rogers, B. N.; Denton, R. E.; Hesse, M.; Kuznetsova, M.; Ma, Z. W.; Bhattacharjee, A.; Otto, A.; Pritchett, P. L., Geospace environmental modeling (GEM) magnetic reconnection challenge, J. Geophys. Res., 106, A3, 3715-3719, (2001)
[55] Brio, M.; Wu, C. C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 400-422, (1988) · Zbl 0637.76125
[56] Amendt, P.; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D., The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database, Phys. Plasmas, 18, (2011)
[57] Casey, D. T.; Frenje, J. A.; Johnson, M. G.; Manuel, M. J.E.; Rinderknecht, H. G.; Sinenian, N.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Y.; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Rygg, J. R.; Herrmann, H. W.; Kim, Y. H.; Bacher, A. D., Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions, Phys. Rev. Lett., 108, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.