×

Protecting single-photon entanglement with practical entanglement source. (English) Zbl 1373.81097

Summary: Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81V80 Quantum optics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[2] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[4] Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999) · doi:10.1103/PhysRevA.59.162
[5] Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[6] Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[7] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[8] Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 042305 (2005) · doi:10.1103/PhysRevA.71.042305
[9] Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016) · doi:10.1038/lsa.2016.144
[10] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[11] Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238 (2014) · doi:10.1007/s11433-014-5461-x
[12] Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210 (2014) · doi:10.1007/s11433-013-5358-0
[13] Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696 (2014) · doi:10.1007/s11433-014-5542-x
[14] Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015) · doi:10.1007/s11434-014-0703-x
[15] Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, C.: Multiuser-to-multiuser entanglement distribution based on 1550nm polarization-entangled photons. Sci. Bull. 60, 1128 (2015) · doi:10.1007/s11434-015-0801-4
[16] Lee, H.W., Kim, J.: Quantum teleportation and Bells inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2001) · doi:10.1103/PhysRevA.63.012305
[17] van Enk, S.J.: Single-particle entanglement. Phys. Rev. A 72, 064306 (2005) · doi:10.1103/PhysRevA.72.064306
[18] Hessmo, B., Usachev, P., Heydari, H., Björk, G.: Experimental demonstration of single photon nonlocality. Phys. Rev. Lett. 92, 180401 (2004) · doi:10.1103/PhysRevLett.92.180401
[19] Monteiro, F., Caprara Vivoli, V., Guerreiro, T., Martin, A., Bancal, J.D., Zbinden, H., Thew, R.T., Sangouard, N.: Revealing genuine optical-path entanglement. Phys. Rev. Lett. 114, 170504 (2015) · doi:10.1103/PhysRevLett.114.170504
[20] Guerreiro, T., Monteiro, F., Martin, A., et al.: Demonstration of Einstein-Podolsky-Rosen steering using single-photon path entanglement and displacement-based detection. Phys. Rev. Lett. 117, 070404 (2016) · doi:10.1103/PhysRevLett.117.070404
[21] Ho, M., Morin, O., Bancal, J.D., Gisin, N., Sangouard, N., Laurat, J.: Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses. New J. Phys. 16, 130305 (2014)
[22] Duan, L.M., Lukin, M.D., Cirac, J.T., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001) · doi:10.1038/35106500
[23] Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007) · doi:10.1103/PhysRevLett.98.190503
[24] Sangouard, N., Simon, C., Zhao, B., Chen, Y.A., de Riedmatten, H., Pan, J.W., Gisin, N.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008) · doi:10.1103/PhysRevA.77.062301
[25] Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nat. Lond. 410, 1067 (2001) · doi:10.1038/35074041
[26] Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013) · doi:10.1103/PhysRevA.88.022302
[27] Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014) · doi:10.1088/1612-2011/11/8/085203
[28] Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014) · doi:10.1103/PhysRevA.90.052309
[29] Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015) · doi:10.1038/srep07815
[30] Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001) · doi:10.1103/PhysRevA.64.014301
[31] Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008) · doi:10.1103/PhysRevA.77.062325
[32] Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012) · doi:10.1103/PhysRevA.85.012307
[33] Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012) · doi:10.1103/PhysRevA.85.042302
[34] Liang, B.B., Hu, S., Cui, W.X., An, C.S., Xing, Y., Hu, J.S., Sun, G.Q., Jiang, X.X., Wang, H.F.: Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by quantum dot-microcavity coupled system. Laser Phys. Lett. 11, 115202 (2014) · doi:10.1088/1612-2011/11/11/115202
[35] Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013) · doi:10.1103/PhysRevA.88.012302
[36] Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58, 040303 (2015)
[37] Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776 (2013) · Zbl 1297.81039 · doi:10.3390/e15051776
[38] Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015) · doi:10.1103/PhysRevA.91.062302
[39] Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014) · doi:10.1088/1612-2011/11/12/125201
[40] Wang, C., Cao, C., He, L.Y., Zhang, C.L.: Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Inf. Process. 13, 1025 (2014) · Zbl 1291.81061 · doi:10.1007/s11128-013-0707-5
[41] Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process. 14, 1265 (2015) · Zbl 1328.81030 · doi:10.1007/s11128-015-0924-1
[42] Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quant. Inf. Process. 12, 2087 (2013) · Zbl 1267.81085 · doi:10.1007/s11128-012-0511-7
[43] Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013) · Zbl 1264.81064 · doi:10.1007/s11128-012-0472-x
[44] Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967 (2014) · Zbl 1305.81022 · doi:10.1007/s11128-014-0789-8
[45] Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015) · Zbl 1317.81037 · doi:10.1007/s11128-015-0948-6
[46] Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger-Horne-Zeilinger state. Quantum Inf. Process. 14, 4131 (2015) · Zbl 1327.81062 · doi:10.1007/s11128-015-1113-y
[47] Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015) · doi:10.1007/s11433-015-5672-9
[48] Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process. 15, 1669 (2016) · Zbl 1338.81104 · doi:10.1007/s11128-016-1246-7
[49] Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n+1)-qubit states. Quantum Inf. Process. 14, 4523 (2015) · Zbl 1333.81024 · doi:10.1007/s11128-015-1128-4
[50] Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015) · Zbl 1328.81051 · doi:10.1007/s11128-015-0938-8
[51] Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008) · doi:10.1103/PhysRevA.78.050301
[52] Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010) · doi:10.1103/PhysRevLett.104.180504
[53] Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272 (2010) · Zbl 1234.81045
[54] Zhou, L., Sheng, Y.B.: Efficient single-photon entanglement concentration for quantum communications. Opt. Commun. 313, 217 (2014) · doi:10.1016/j.optcom.2013.10.041
[55] Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013) · doi:10.1364/JOSAB.30.000071
[56] Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: lvovsky A. (ed.) Proceedings of the 9th International Conference on Quantum Commmunication Measuremeny and Computing, (AIP, 2009), pp. 155-160 · Zbl 1191.81034
[57] Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010) · doi:10.1103/PhysRevLett.105.070501
[58] Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010) · doi:10.1038/nphoton.2010.35
[59] Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2012) · doi:10.1038/nphys2469
[60] Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011) · doi:10.1103/PhysRevA.84.010304
[61] Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Efficient heralding of photonic qubits with application to device-inpendent quantum key distribution. Phys. Rev. A 84, 022325 (2011) · doi:10.1103/PhysRevA.84.022325
[62] Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012) · doi:10.1103/PhysRevA.86.023815
[63] Bruno, N., Pini, V., Martin, A., Verma, V.B., Nam, S.W., Mirin, R., Lita, A., Marsili, F., Krozh, B., Bussières, F., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.: Heralded amplification of photonic qubits. Opt. Express 24, 125 (2016) · doi:10.1364/OE.24.000125
[64] Meyer-Scott, E., Bula, M., Bartkiewicz, K., Černoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based liner-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013) · doi:10.1103/PhysRevA.88.012327
[65] Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Linear-optical qubit amplification with spontaneous parametric down-conversion source. Laser Phys. 26, 015204 (2016) · doi:10.1088/1054-660X/26/1/015204
[66] Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012) · doi:10.1103/PhysRevA.86.034302
[67] Zhou, L., Sheng, Y.B.: Distilling single-photon entanglement from photon loss and decoherence. J. Opt. Soc. Am. B 30, 2737 (2013) · doi:10.1364/JOSAB.30.002737
[68] Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014) · Zbl 1303.81026 · doi:10.1007/s11128-014-0754-6
[69] Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014) · doi:10.1103/PhysRevA.89.052303
[70] Wang, T.J., Wang, C.: High-efficient entanglement distillation from photon loss and decoherence. Opt. Express 23, 31550 (2015) · doi:10.1364/OE.23.031550
[71] Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015) · Zbl 1311.81035 · doi:10.1007/s11128-014-0886-8
[72] Feng, Z.F., Ou-Yang, Y., Zhou, L., Sheng, Y.B.: Distillation of arbitrary single-photon entanglement assisted with polarized Bell states. Quantum Inf. Process. 14, 3693 (2015) · Zbl 1327.81084 · doi:10.1007/s11128-015-1075-0
[73] Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015) · doi:10.1088/1612-2011/12/4/045203
[74] Yang, S., Zou, X.B., Guo, G.C., Ruan, N.J., Lin, X.L., Wu, Z.Q.: Long baseline weak-thermal-light interferometry with noiseless linear amplification. J. Opt. Soc. Am. B 32, 1031 (2015) · doi:10.1364/JOSAB.32.001031
[75] Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001) · doi:10.1103/PhysRevA.64.012304
[76] White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. A 83, 03103 (2000)
[77] Mic̆cuda, M., Straka, I., Miková, M., Cerf, N.J., Fiurášek, J., Jez̆ek, M.: Noisless loss suppression in quantum optical communication. Phys. Rev. Lett. 109, 180503 (2012) · doi:10.1103/PhysRevLett.109.180503
[78] Halenkovǎ, E., C̆ernoch, A., Lemr, K., Soubusta, J., Drusová, S.: Experimental implementation of the multifunctional compact two-photon state analyzer. Appl. Opt. 51, 474 (2012) · doi:10.1364/AO.51.000474
[79] Wang, X.L., Chen, L.K., Li, W., Huang, H.L., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016) · doi:10.1103/PhysRevLett.117.210502
[80] Zhang, C., Huang, Y.F., Wang, Z., Liu, B.H., Li, C.F., Guo, G.C.: Experimental Greenberger-Horne-Zeilinger-Type six-photon quantum nonlocality. Phys. Rev. Lett. 115, 260402 (2016) · doi:10.1103/PhysRevLett.115.260402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.