×

Note on stability of new hyperbolic AdS black holes and phase transitions in Rényi entropies. (English) Zbl 1373.83062

Summary: We construct a series of new hyperbolic black hole solutions in Einstein-Scalar system and we apply holographic approach to investigate the spherical Rényi entropy in various deformations of dual conformal field theories (CFTs). Especially, we introduce various powers of scalars in the scalar potentials for massive and massless scalar. These scalar potentials correspond to deformation of dual CFTs. Then we solve asymptotically hyperbolic AdS black hole solutions numerically. We map the instabilities of these black hole solutions to phase transitions of field theory in terms of CHM mapping between hyperbolic hairy AdS black hole and spherical Rényi entropy in dual field theories. Based on these solutions, we study the temperature dependent condensation of dual operator of massive and massless scalar respectively. These condensations show that there might exist phase transitions in dual deformed CFTs. We also compare free energy between asymptotically hyperbolic AdS black hole solutions and hyperbolic AdS Schwarz (AdS-SW) black hole to test phase transitions. In order to confirm the existence of phase transitions, we turn on linear in-homogeneous perturbation to test stability of these hyperbolic hairy AdS black holes. In this paper, we show how potential parameters affect the stability of hyperbolic black holes in several specific examples. For general values of potential parameters, it needs further study to see how the transition happens. Finally, we comment on these instabilities associated with spherical Rényi entropy in dual deformed CFTs.

MSC:

83C57 Black holes
83C15 Exact solutions to problems in general relativity and gravitational theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
94A17 Measures of information, entropy
14D15 Formal methods and deformations in algebraic geometry
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Maldacena, J. M., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.. Adv. Theor. Math. Phys., Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[4] Aharony, O.; Gubser, S. S.; Maldacena, J. M.; Ooguri, H.; Oz, Y., Large \(N\) field theories, string theory and gravity, Phys. Rep., 323, 183 (2000) · Zbl 1368.81009
[5] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Building a holographic superconductor, Phys. Rev. Lett., 101, Article 031601 pp. (2008) · Zbl 1404.82086
[6] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Holographic superconductors, J. High Energy Phys., 0812, Article 015 pp. (2008) · Zbl 1329.81390
[7] Erlich, J.; Katz, E.; Son, D. T.; Stephanov, M. A., QCD and a holographic model of hadrons, Phys. Rev. Lett., 95, Article 261602 pp. (2005)
[8] Gursoy, U.; Kiritsis, E., Exploring improved holographic theories for QCD: Part I, J. High Energy Phys., 0802, Article 032 pp. (2008)
[9] Gursoy, U.; Kiritsis, E.; Nitti, F., Exploring improved holographic theories for QCD: Part II, J. High Energy Phys., 0802, Article 019 pp. (2008)
[10] Gubser, S. S.; Nellore, A., Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D, 78, Article 086007 pp. (2008)
[11] Li, D.; He, S.; Huang, M.; Yan, Q. S., Thermodynamics of deformed \(AdS_5\) model with a positive/negative quadratic correction in graviton-dilaton system, J. High Energy Phys., 1109, Article 041 pp. (2011) · Zbl 1301.81304
[12] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, Article 181602 pp. (2006) · Zbl 1228.83110
[13] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, J. High Energy Phys., 0608, Article 045 pp. (2006)
[14] Klebanov, I. R.; Kutasov, D.; Murugan, A., Entanglement as a probe of confinement, Nucl. Phys. B, 796, 274 (2008) · Zbl 1219.81214
[15] Albash, T.; Johnson, C. V., Holographic studies of entanglement entropy in superconductors, J. High Energy Phys., 1205, Article 079 pp. (2012)
[16] Cai, R. G.; He, S.; Li, L.; Zhang, Y. L., Holographic entanglement entropy in insulator/superconductor transition, J. High Energy Phys., 1207, Article 088 pp. (2012)
[17] Cai, R. G.; He, S.; Li, L.; Zhang, Y. L., Holographic entanglement entropy on P-wave superconductor phase transition, J. High Energy Phys., 1207, Article 027 pp. (2012)
[18] Belin, A.; Maloney, A.; Matsuura, S., Holographic phases of Rényi entropies, J. High Energy Phys., 1312, Article 050 pp. (2013)
[19] Belin, A.; Hung, L. Y.; Maloney, A.; Matsuura, S., Charged Rényi entropies and holographic superconductors, J. High Energy Phys., 1501, Article 059 pp. (2015) · Zbl 1388.83636
[20] Callan, C. G.; Wilczek, F., On geometric entropy, Phys. Lett. B, 333, 55 (1994)
[21] Calabrese, P.; Cardy, J. L., Entanglement entropy and quantum field theory, J. Stat. Mech., 0406, Article P06002 pp. (2004) · Zbl 1082.82002
[22] Calabrese, P.; Cardy, J. L., Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quantum Inf., 4, 429 (2006) · Zbl 1097.81014
[23] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, J. High Energy Phys., 1308, Article 090 pp. (2013) · Zbl 1342.83185
[24] Song, W.; Wen, Q.; Xu, J., Generalized gravitational entropy for WAdS3
[25] Klebanov, I. R.; Pufu, S. S.; Sachdev, S.; Safdi, B. R., Rényi entropies for free field theories, J. High Energy Phys., 1204, Article 074 pp. (2012) · Zbl 1348.81140
[26] Nishioka, T.; Yaakov, I., Supersymmetric Rényi entropy, J. High Energy Phys., 1310, Article 155 pp. (2013)
[27] Agon, C. A.; Headrick, M.; Jafferis, D. L.; Kasko, S., Disk entanglement entropy for a Maxwell field, Phys. Rev. D, 89, 2, Article 025018 pp. (2014)
[28] Hama, N.; Nishioka, T.; Ugajin, T., Supersymmetric Rényi entropy in five dimensions, J. High Energy Phys., 1412, Article 048 pp. (2014)
[29] Huang, X.; Rey, S. J.; Zhou, Y., Three-dimensional SCFT on conic space as hologram of charged topological black hole, J. High Energy Phys., 1403, Article 127 pp. (2014)
[30] Nozaki, M.; Numasawa, T.; Takayanagi, T., Quantum entanglement of local operators in conformal field theories, Phys. Rev. Lett., 112, Article 111602 pp. (2014)
[31] Nozaki, M., Notes on quantum entanglement of local operators, J. High Energy Phys., 1410, Article 147 pp. (2014) · Zbl 1333.81293
[32] He, S.; Numasawa, T.; Takayanagi, T.; Watanabe, K., Quantum dimension as entanglement entropy in 2D CFTs, Phys. Rev. D, 90, Article 041701 pp. (2014)
[33] Caputa, P.; Nozaki, M.; Takayanagi, T., Entanglement of local operators in large-N conformal field theories, PTEP, 2014, Article 093B06 pp. (2014) · Zbl 1331.81062
[34] Asplund, C. T.; Bernamonti, A.; Galli, F.; Hartman, T., Holographic entanglement entropy from 2d CFT: heavy states and local quenches, J. High Energy Phys., 1502, Article 171 pp. (2015) · Zbl 1388.83084
[35] Guo, W. Z.; He, S., Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs, J. High Energy Phys., 1504, Article 099 pp. (2015)
[36] Chen, B.; Guo, W. Z.; He, S.; Wu, J.q., Entanglement entropy for descendent local operators in 2D CFTs · Zbl 1388.81076
[37] Nozaki, M.; Numasawa, T.; Matsuura, S., Quantum entanglement of fermionic local operators
[38] Sárosi, G.; Ugajin, T., Relative entropy of excited states in two dimensional conformal field theories, J. High Energy Phys., 1607, Article 114 pp. (2016) · Zbl 1390.83130
[39] Sárosi, G.; Ugajin, T., Relative entropy of excited states in conformal field theories of arbitrary dimensions, J. High Energy Phys., 1702, Article 060 pp. (2017) · Zbl 1377.83105
[40] He, S.; Numasawa, T.; Takayanagi, T.; Watanabe, K., Notes on entanglement entropy in string theory, J. High Energy Phys., 1505, Article 106 pp. (2015) · Zbl 1388.83665
[41] Dong, X., The gravity dual of Renyi entropy, Nat. Commun., 7, Article 12472 pp. (2016)
[42] Balakrishnan, S.; Dutta, S.; Faulkner, T., Gravitational dual of the Rényi twist displacement operator
[43] Bianchi, L.; Chapman, S.; Dong, X.; Galante, D. A.; Meineri, M.; Myers, R. C., Shape dependence of holographic Rényi entropy in general dimensions, J. High Energy Phys., 1611, Article 180 pp. (2016) · Zbl 1390.81379
[44] Chu, C. S.; Miao, R. X., Universality in the shape dependence of holographic Rényi entropy for general higher derivative gravity, J. High Energy Phys., 1612, Article 036 pp. (2016) · Zbl 1390.83270
[45] Casini, H.; Huerta, M.; Myers, R. C., Towards a derivation of holographic entanglement entropy, J. High Energy Phys., 1105, Article 036 pp. (2011) · Zbl 1296.81073
[46] Hung, L. Y.; Myers, R. C.; Smolkin, M.; Yale, A., Holographic calculations of Rényi entropy, J. High Energy Phys., 1112, Article 047 pp. (2011) · Zbl 1306.81159
[47] Myers, R. C.; Sinha, A., Seeing a c-theorem with holography, Phys. Rev. D, 82, Article 046006 pp. (2010)
[48] Myers, R. C.; Sinha, A., Holographic c-theorems in arbitrary dimensions, J. High Energy Phys., 1101, Article 125 pp. (2011) · Zbl 1214.83036
[49] Belin, A.; Hung, L. Y.; Maloney, A.; Matsuura, S.; Myers, R. C.; Sierens, T., Holographic charged Rényi entropies, J. High Energy Phys., 1312, Article 059 pp. (2013)
[50] Brown, A. R.; Roberts, D. A.; Susskind, L.; Swingle, B.; Zhao, Y., Complexity equals action
[51] Aminneborg, S.; Bengtsson, I.; Holst, S.; Peldan, P., Making anti-de Sitter black holes, Class. Quantum Gravity, 13, 2707 (1996) · Zbl 0862.53065
[52] Mann, R. B., Pair production of topological anti-de Sitter black holes, Class. Quantum Gravity, 14, L109 (1997) · Zbl 0873.53073
[53] Mann, R. B., Charged topological black hole pair creation, Nucl. Phys. B, 516, 357 (1998) · Zbl 0920.53047
[54] Emparan, R., AdS/CFT duals of topological black holes and the entropy of zero energy states, J. High Energy Phys., 9906, Article 036 pp. (1999) · Zbl 0951.83021
[55] Emparan, R., AdS membranes wrapped on surfaces of arbitrary genus, Phys. Lett. B, 432, 74 (1998)
[56] Birmingham, D., Topological black holes in anti-de Sitter space, Class. Quantum Gravity, 16, 1197 (1999) · Zbl 0933.83025
[57] Dias, O. J.C.; Monteiro, R.; Reall, H. S.; Santos, J. E., A scalar field condensation instability of rotating anti-de Sitter black holes, J. High Energy Phys., 1011, Article 036 pp. (2010) · Zbl 1294.83042
[58] Robinson, I., Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys., 7, 351 (1959) · Zbl 0085.42804
[59] Bertotti, B., Phys. Rev., 116, 1331 (1959) · Zbl 0093.43403
[60] Bardeen, J. M.; Horowitz, G. T., The extreme Kerr throat geometry: a vacuum analog of AdS(2) x S**2, Phys. Rev. D, 60, Article 104030 pp. (1999)
[61] Brihaye, Y.; Hartmann, B., Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation, Phys. Rev. D, 84, Article 084008 pp. (2011)
[62] Belin, A.; Maloney, A., A new instability of the topological black hole · Zbl 1351.83023
[63] He, S.; Li, D.; Wu, J. B., Entanglement temperature in non-conformal cases, J. High Energy Phys., 1310, Article 142 pp. (2013)
[64] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, J. High Energy Phys., 9807, Article 023 pp. (1998) · Zbl 0958.81083
[65] Henningson, M.; Skenderis, K., Holography and the Weyl anomaly, Fortschr. Phys., 48, 125 (2000) · Zbl 0976.81093
[66] Balasubramanian, V.; Kraus, P., A stress tensor for anti-de Sitter gravity, Commun. Math. Phys., 208, 413 (1999) · Zbl 0946.83013
[67] Hyun, S.; Kim, W. T.; Lee, J., Statistical entropy and AdS/CFT correspondence in BTZ black holes, Phys. Rev. D, 59, Article 084020 pp. (1999)
[68] Emparan, R.; Johnson, C. V.; Myers, R. C., Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D, 60, Article 104001 pp. (1999)
[69] Mann, R. B., Misner string entropy, Phys. Rev. D, 60, Article 104047 pp. (1999)
[70] Skenderis, K., Lecture notes on holographic renormalization, Class. Quantum Gravity, 19, 5849 (2002) · Zbl 1044.83009
[71] de Haro, S.; Solodukhin, S. N.; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595 (2001) · Zbl 0984.83043
[72] Nojiri, S.; Odintsov, S. D., Conformal anomaly for dilaton coupled theories from AdS/CFT correspondence, Phys. Lett. B, 444, 92 (1998)
[73] Nojiri, S.; Odintsov, S. D.; Ogushi, S., Finite action in d-5 gauged supergravity and dilatonic conformal anomaly for dual quantum field theory, Phys. Rev. D, 62, Article 124002 pp. (2000) · Zbl 1071.83564
[74] Bhattacharya, J.; Nozaki, M.; Takayanagi, T.; Ugajin, T., Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett., 110, 9, Article 091602 pp. (2013)
[75] z. Guo, W.; He, S.; Tao, J., Note on entanglement temperature for low thermal excited states in higher derivative gravity, J. High Energy Phys., 1308, Article 050 pp. (2013)
[76] Blanco, D. D.; Casini, H.; Hung, L. Y.; Myers, R. C., Relative entropy and holography, J. High Energy Phys., 1308, Article 060 pp. (2013) · Zbl 1342.83128
[77] de Boer, J.; Heller, M. P.; Myers, R. C.; Neiman, Y., Holographic de Sitter geometry from entanglement in conformal field theory, Phys. Rev. Lett., 116, 6, Article 061602 pp. (2016)
[78] Allais, A.; Mezei, M., Some results on the shape dependence of entanglement and Rényi entropies, Phys. Rev. D, 91, 4, Article 046002 pp. (2015)
[79] Lewkowycz, A.; Perlmutter, E., Universality in the geometric dependence of Rényi entropy, J. High Energy Phys., 1501, Article 080 pp. (2015) · Zbl 1388.81058
[80] Faulkner, T.; Leigh, R. G.; Parrikar, O., Shape dependence of entanglement entropy in conformal field theories
[81] Dong, X., Shape dependence of holographic Rényi entropy in conformal field theories
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.