×

Stabilization and best actuator location for the Navier-Stokes equations. (English) Zbl 1373.93129

Summary: We study the numerical approximation of the boundary stabilization of the Navier-Stokes equations with mixed Dirichlet/Neumann boundary conditions, around an unstable stationary solution in a two dimensional domain. We first derive a semidiscrete controlled system, coming from a finite element approximation of the Navier-Stokes equations, which is new in the literature. We propose a new strategy for finding a boundary feedback control law able to stabilize the nonlinear semidiscrete controlled system in the presence of boundary disturbances. We determine the best control location. Next, we study the degree of stabilizability of the different real generalized eigenspaces of the controlled system. Based on that analysis, we determine an invariant subspace \(\mathbb{Z}_u\) and the projection of the controlled system onto \(\mathbb{Z}_u\). The projected system is used to determine feedback control laws. Our numerical results show that this control strategy is quite efficient when applied to the Navier-Stokes system for a Reynolds number \(R_e=150\) with boundary perturbations.

MSC:

93B52 Feedback control
37M99 Approximation methods and numerical treatment of dynamical systems
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76N25 Flow control and optimization for compressible fluids and gas dynamics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

Getfem++; ARPACK; COMSOL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. \AAkervik, J. Høepffner, U. Ehrenstein, and D.S. Henningson, {\it Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes}, J. Fluid Mech., 579 (2007), pp. 305-314. · Zbl 1175.76049
[2] L. Amodei and J.-M. Buchot, {\it A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation}, Numer. Linear Algebra Appl., 19 (2012), pp. 700-727. · Zbl 1274.76186
[3] M. Badra, {\it Stabilisation par Feedback et Approximation des Equations de Navier-Stokes}, Ph.D. thesis, Université Paul Sabatier Toulouse III, Toulouse, France, 2006; available online at .
[4] M. Badra and T. Takahashi, {\it Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system}, SIAM J. Control Optim., 49 (2011), pp. 420-463, . · Zbl 1217.93137
[5] E. Bänsch, P. Benner, J. Saak, and H.K. Weichelt, {\it Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows}, SIAM J. Sci. Comput., 37 (2015), pp. A832-A858, . · Zbl 1312.93083
[6] A. Barbagallo, D. Sipp, and P.J. Schmid, {\it Closed-loop control of an open cavity flow using reduced-order models}, J. Fluid Mech., 641 (2009), pp. 1-50. · Zbl 1183.76701
[7] D. Barkley, {\it Linear analysis of the cylinder wake mean flow}, Europhys. Lett., 75 (2006), pp. 750-756.
[8] P. Benner and J. Heiland, {\it Time-dependent Dirichlet conditions in finite element discretizations}, ScienceOpen Research, (2015), .
[9] P. Benner, J. Saak, M. Stoll, and H.K. Weichelt, {\it Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible Stokes flow}, SIAM J. Sci. Comput., 35 (2013), pp. S150-S170, . · Zbl 1290.76059
[10] M. Bergmann and L. Cordier, {\it Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models}, J. Comput. Phys., 227 (2008), pp. 7813-7840. · Zbl 1388.76073
[11] D. Boffi, {\it Finite element approximation of eigenvalue problems}, Acta Numer., 19 (2010), pp. 1-120. · Zbl 1242.65110
[12] J.-M. Buchot, J.-P. Raymond, and J. Tiago, {\it Coupling estimation and control for a two dimensional Burgers type equation}, ESAIM Control Optim. Calc. Var., 21 (2015), pp. 535-560. · Zbl 1311.93032
[13] K.K. Chen and C.W. Rowley, {\it H2 optimal actuator and sensor placement in the linearised complex Ginzburg-Landau system}, J. Fluid Mech., 681 (2011), pp. 241-260. · Zbl 1241.76164
[14] H. Choi, W.-P. Jeon, and J. Kim, {\it Control of flow over a bluff body}, in Annu. Rev. Fluid Mech. 40, Annual Reviews, Palo Alto, CA, 2008, pp. 113-139. · Zbl 1136.76022
[15] COMSOL Multiphysics Version 5.3, COMSOL, 2017.
[16] A.V. Fursikov and R. Rannacher, {\it Optimal Neumann control for the two-dimensional steady-state Navier-Stokes equations}, in New Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser Verlag, Basel, 2010, pp. 193-221. · Zbl 1200.35214
[17] M.D. Gunzburger and S.L. Hou, {\it Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses}, SIAM J. Numer. Anal., 29 (1992), pp. 390-424, . · Zbl 0748.76073
[18] J.-W. He, M. Chevalier, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, {\it Drag reduction by active control for flow past cylinders}, in Computational Mathematics Driven by Industrial Problems, Springer, Berlin, 2000, pp. 287-363.
[19] M. Heinkenschloss, D.C. Sorensen, and K. Sun, {\it Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations}, SIAM J. Sci. Comput., 30 (2008), pp. 1038-1063, . · Zbl 1216.76015
[20] K. Hiramoto, H. Doki, and G. Obinata, {\it Optimal sensor/actuator placement for active vibration control using explicit solution of algebraic Riccati equation}, J. Sound Vibration, 229 (2000), pp. 1057-1075. · Zbl 1235.93087
[21] S. Kesavan and J.-P. Raymond, {\it On a degenerate Riccati equation}, Control Cybernet., 38 (2009), pp. 1393-1410. · Zbl 1236.49052
[22] R.B. Lehoucq, D.C. Sorensen, and C. Yang, {\it ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods}, SIAM, Philadelphia, 1998, . · Zbl 0901.65021
[23] V. Maz’ya and J. Rossmann, {\it Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains}, Arch. Ration. Mech. Anal., 194 (2009), pp. 669-712. · Zbl 1253.76019
[24] K. Morris, {\it Linear-quadratic optimal actuator location}, IEEE Trans. Automat. Control, 56 (2011), pp. 113-124. · Zbl 1368.93278
[25] K. Morris and M.A. Demetriou, {\it Using \(H_2\)-control performance metrics for the optimal actuator location of distributed parameter systems}, IEEE Trans. Automat. Control, 60 (2015), pp. 450-462. · Zbl 1360.93318
[26] P.A. Nguyen and J.-P. Raymond, {\it Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions}, SIAM J. Control Optim., 53 (2015), pp. 3006-3039, . · Zbl 1327.93194
[27] D.S. Park, D.M. Ladd, and E.W. Hendricks, {\it Feedback control of Von Karman vortex shedding behind a circular cylinder at low Reynolds numbers}, Phys. Fluids, 6 (1994), pp. 2390-2405. · Zbl 0838.76018
[28] J. Pitkäranta, {\it Boundary subspaces for the finite element method with Lagrange multipliers}, Numer. Math., 33 (1979), pp. 273-289. · Zbl 0422.65062
[29] J.-P. Raymond, {\it Feedback boundary stabilization of the two-dimensional Navier-Stokes equations}, SIAM J. Control Optim., 45 (2006), pp. 790-828, . · Zbl 1121.93064
[30] J.-P. Raymond, {\it Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations}, J. Math. Pures Appl. (9), 87 (2007), pp. 627-669. · Zbl 1114.93040
[31] J.-P. Raymond and L. Thevenet, {\it Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers}, Discrete Contin. Dyn. Syst., 27 (2010), pp. 1159-1187. · Zbl 1211.93103
[32] Y. Renard and J. Pommier, {\it GetFEM++. An Open Source Finite Element Library}, 2017, .
[33] R. Stenberg, {\it Error analysis of some finite element methods for the Stokes problem}, Math. Comp., 54 (1990), pp. 495-508. · Zbl 0702.65095
[34] M. van de Wal and B. de Jager, {\it A review of methods for input/output selection}, Automatica J. IFAC, 37 (2001), pp. 487-510. · Zbl 0995.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.