×

zbMATH — the first resource for mathematics

Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. (English) Zbl 1374.76074
Summary: Coherent features of a turbulent Mach 0.9, Reynolds number \(10^{6}\) jet are educed from a high-fidelity large eddy simulation. Besides the well-known Kelvin-Helmholtz instabilities of the shear layer, a new class of trapped acoustic waves is identified in the potential core. A global linear stability analysis based on the turbulent mean flow is conducted. The trapped acoustic waves form branches of discrete eigenvalues in the global spectrum, and the corresponding global modes accurately match the educed structures. Discrete trapped acoustic modes occur in a hierarchy determined by their radial and axial order. A local dispersion relation is constructed from the global modes and found to agree favourably with an empirical dispersion relation educed from the simulation data. The product between direct and adjoint modes is then used to isolate the trapped waves. Under certain conditions, resonance in the form of a beating occurs between trapped acoustic waves of positive and negative group velocities. This resonance explains why the trapped modes are prominently observed in the simulation and as tones in previous experimental studies. In the past, these tones were attributed to external factors. Here, we show that they are an intrinsic feature of high-subsonic jets that can be unambiguously identified by a global linear stability analysis.

MSC:
76E15 Absolute and convective instability and stability in hydrodynamic stability
76Q05 Hydro- and aero-acoustics
76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baqui, Y. B.; Agarwal, A.; Cavalieri, A. V. G.; Sinayoko, S., A coherence-matched linear source mechanism for subsonic jet noise, J. Fluid Mech., 776, 235-267, (2015)
[2] Bodony, D. J.; Lele, S. K., Current status of jet noise predictions using large-eddy simulation, AIAA J., 46, 2, 364-380, (2008)
[3] Brès, G. A.; Ham, F. E.; Nichols, J. W.; Lele, S. K., Unstructured large-eddy simulations of supersonic jets, AIAA J., 55, 4, 1164-1184, (2017)
[4] Brès, G. A., Jaunet, V., Le Rallic, M., Jordan, P., Colonius, T. & Lele, S. K.2015 Large eddy simulation for jet noise: the importance of getting the boundary layer right. AIAA Paper 2015-3535.
[5] Brès, G. A., Jaunet, V., Le Rallic, M., Jordan, P., Towne, A., Schmidt, O. T., Colonius, T., Cavalieri, A. V. G. & Lele, S. K.2016Large eddy simulation for jet noise: azimuthal decomposition and intermittency of the radiated sound. In 22nd AIAA/CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics (AIAA).
[6] Brès, G. A., Jordan, P., Colonius, T., Le Rallic, M., Jaunet, V. & Lele, S. K.2014Large eddy simulation of a Mach 0.9 turbulent jet. In Center for Turbulence Research Proceedings of the Summer Program, p. 221.
[7] Briggs, R. J., Electron-stream Interaction with Plasmas, (1964), MIT Press
[8] Cavalieri, A. V. G.; Rodríguez, D.; Jordan, P.; Colonius, T.; Gervais, Y., Wavepackets in the velocity field of turbulent jets, J. Fluid Mech., 730, 559-592, (2013) · Zbl 1291.76280
[9] Chandler, G. J.; Juniper, M. P.; Nichols, J. W.; Schmid, P. J., Adjoint algorithms for the Navier-Stokes equations in the low mach number limit, J. Comput. Phys., 231, 4, 1900-1916, (2012) · Zbl 1408.76130
[10] Chomaz, J.-M., Global instabilities in spatially developing flows: non-normality and nonlinearity, Annu. Rev. Fluid Mech., 37, 357-392, (2005) · Zbl 1117.76027
[11] Chu, B.-T., On the energy transfer to small disturbances in fluid flow (Part I), Acta Mechanica, 1, 3, 215-234, (1965)
[12] Crighton, D. G.; Gaster, M., Stability of slowly diverging jet flow, J. Fluid Mech., 77, 2, 397-413, (1976) · Zbl 0338.76021
[13] Crouch, J. D.; Garbaruk, A.; Magidov, D., Predicting the onset of flow unsteadiness based on global instability, J. Comput. Phys., 224, 2, 924-940, (2007) · Zbl 1123.76018
[14] Crow, S. C.; Champagne, F. H., Orderly structure in jet turbulence, J. Fluid Mech., 48, 3, 547-591, (1971)
[15] Farrell, B. F.; Ioannou, P. J., Stochastic forcing of the linearized Navier-Stokes equations, Phys. Fluids A, 5, 11, 2600-2609, (1993) · Zbl 0809.76078
[16] Garnaud, X.; Lesshafft, L.; Schmid, P. J.; Huerre, P., Modal and transient dynamics of jet flows, Phys. Fluids, 25, 4, (2013) · Zbl 1284.76149
[17] Garnaud, X.; Lesshafft, L.; Schmid, P. J.; Huerre, P., The preferred mode of incompressible jets: linear frequency response analysis, J. Fluid Mech., 716, 189-202, (2013) · Zbl 1284.76149
[18] Giannetti, F.; Luchini, P., Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech., 581, 167-197, (2007) · Zbl 1115.76028
[19] Gudmundsson, K.; Colonius, T., Instability wave models for the near-field fluctuations of turbulent jets, J. Fluid Mech., 689, 97-128, (2011) · Zbl 1241.76203
[20] Huerre, P.; Monkewitz, P. A., Local and global instabilities in spatially developing flows, Annu. Rev. Fluid Mech., 22, 1, 473-537, (1990) · Zbl 0734.76021
[21] Jeun, J.; Nichols, J. W.; Jovanović, M. R., Input – output analysis of high-speed axisymmetric isothermal jet noise, Phys. Fluids, 28, 4, (2016)
[22] Jordan, P.; Colonius, T., Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., 45, 173-195, (2013) · Zbl 1359.76257
[23] Mattsson, K.; Nordström, J., Summation by parts operators for finite difference approximations of second derivatives, J. Comput. Phys., 199, 2, 503-540, (2004) · Zbl 1071.65025
[24] Mckeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382, (2010) · Zbl 1205.76138
[25] Meliga, P.; Pujals, G.; Serre, É., Sensitivity of 2-d turbulent flow past a d-shaped cylinder using global stability, Phys. Fluids, 24, 6, (2012)
[26] Mettot, C.; Sipp, D.; Bézard, H., Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control, Phys. Fluids, 26, 4, (2014)
[27] Michalke, A., Instability of a compressible circular free jet with consideration of the influence of the jet boundary layer thickness, Z. Flugwiss., 19, 8, 319-328, (1971) · Zbl 0224.76050
[28] Michalke, A., Survey on jet instability theory, Prog. Aerosp. Sci., 21, 159-199, (1984)
[29] Mohseni, K.; Colonius, T., Numerical treatment of polar coordinate singularities, J. Comput. Phys., 157, 2, 787-795, (2000) · Zbl 0981.76075
[30] Mollo-Christensen, E.1963 Measurements of near field pressure of subsonic jets. Tech. Rep. Advis. Group Aeronaut. Res. Dev.
[31] Nichols, J. W.; Lele, S. K., Global modes and transient response of a cold supersonic jet, J. Fluid Mech., 669, 225-241, (2011) · Zbl 1225.76116
[32] Qadri, U. A.; Schmid, P. J., Effect of nonlinearities on the frequency response of a round jet, Phys. Rev. Fluids, 2, (2017)
[33] Semeraro, O.; Lesshafft, L.; Jaunet, V.; Jordan, P., Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: theory and experiment, Intl J. Heat Fluid Flow, 62, 24-32, (2016)
[34] Sipp, D.; Marquet, O.; Meliga, P.; Barbagallo, A., Dynamics and control of global instabilities in open-flows: a linearized approach, Appl. Mech. Rev., 63, 3, (2010)
[35] Suzuki, T.; Colonius, T., Instability waves in a subsonic round jet detected using a near-field phased microphone array, J. Fluid Mech., 565, 1, 197-226, (2006) · Zbl 1104.76023
[36] Tam, C. K. W.; Ahuja, K. K., Theoretical model of discrete tone generation by impinging jets, J. Fluid Mech., 214, 67-87, (1990)
[37] Tam, C. K. W.; Hu, F. Q., On the three families of instability waves of high-speed jets, J. Fluid Mech., 201, 447-483, (1989) · Zbl 0672.76054
[38] Tissot, G.; Zhang, M.; Lajús, F. C.; Cavalieri, A. V. G.; Jordan, P., Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer, J. Fluid Mech., 811, 95-137, (2017) · Zbl 1383.76123
[39] Towne, A.; Cavalieri, A. V. G.; Jordan, P.; Colonius, T.; Schmidt, O. T.; Jaunet, V.; Brès, G. A., Acoustic resonance in the potential core of subsonic jets, J. Fluid Mech., 825, 1113-1152, (2017) · Zbl 1374.76075
[40] Towne, A., Colonius, T., Jordan, P., Cavalieri, A. V. G. & Brès, G. A.2015Stochastic and nonlinear forcing of wavepackets in a mach 0.9 jet. In 21st AIAA/CEAS Aeroacoustics Conference, p. 2217.
[41] Yen, C. C.; Messersmith, N. L., Application of parabolized stability equations to the prediction of jet instabilities, AIAA J., 36, 8, 1541-1544, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.