×

zbMATH — the first resource for mathematics

On full-rank perfect codes over finite fields. (Russian, English) Zbl 1374.94855
Diskretn. Anal. Issled. Oper. 23, No. 3, 107-123 (2016); translation in J. Appl. Ind. Math. 10, No. 3, 444-452 (2016).
Summary: We propose a construction of full-rank \(q\)-ary 1-perfect codes. This is a generalization of the construction of full-rank binary 1-perfect codes by T. Etzion and A. Vardy [IEEE Trans. Inf. Theory 40, No. 3, 754–763 (1994; Zbl 0824.94029)]. The properties of the \(i\)-components of \(q\)-ary Hamming codes are investigated, and the construction of full-rank \(q\)-ary 1-perfect codes is based on these properties. The switching construction of 1-perfect codes is generalized to the \(q\)-ary case. We propose a generalization of the notion of an \(i\)-component of a 1-perfect code and introduce the concept of an \((i, \sigma)\)-component of a \(q\)-ary 1-perfect code. We also present a generalization of the Lindström-Schönheim construction of \(q\)-ary 1-perfect codes and provide a lower bound for the number of pairwise distinct \(q\)-ary 1-perfect codes of length \(n\).
MSC:
94B25 Combinatorial codes
94B60 Other types of codes
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Vasil’ev, Yu. L.; Lyapunov, A. A. (ed.), On nongroup close-packed codes, (1962)
[2] Romanov, A. M., On construction of nonlinear perfect binary codes by inversion of symbols, Diskretn. Anal. Issled. Oper. Ser. 1, 4, 46-52, (1997) · Zbl 0868.94050
[3] Romanov, A. M., On partitions of \(q\)-ary Hamming codes into disjoint components, Diskretn. Anal. Issled. Oper. Ser. 1, 11, 80-87, (2004) · Zbl 1078.94035
[4] Romanov, A. M., A survey of methods for constructing nonlinear perfect binary codes, Diskretn. Anal. Issled. Oper. Ser. 1, 13, 60-88, (2006) · Zbl 1249.94051
[5] Romanov, A. M., On admissible families of components of Hamming codes, Diskretn. Anal. Issled. Oper., 19, 84-91, (2012) · Zbl 1324.94060
[6] Avgustinovich, S. V.; Krotov, D. S., Embedding in a perfect code, J. Combin. Des., 17, 419-423, (2009) · Zbl 1197.94226
[7] Etzion, T.; Vardy, A., Perfect binary codes: constructions, properties, and enumeration, IEEE Trans. Inform. Theory., 40, 754-763, (1994) · Zbl 0824.94029
[8] Etzion, T., Nonequivalent \(q\)-ary perfect codes, SIAMJ. DiscreteMath., 9, 413-423, (1996) · Zbl 0866.94017
[9] Heden, O.; Krotov, D. S., On the structure of non-full-rank perfect \(q\)-ary codes, Adv. Math. Combin., 5, 149-156, (2011) · Zbl 1252.94122
[10] Lindström, B., On group and nongroup perfect codes in q symbols, Math. Scand., 25, 149-158, (1969) · Zbl 0205.46903
[11] Los’, A. V., Construction of perfect \(q\)-ary codes, (2004) · Zbl 1085.94022
[12] Östergrd, P. R. J.; Pottonen, O.; Phelps, K. T., The perfect binary one-error-correcting codes of length 15: part II—properties, IEEE Trans. Inform. Theory, 56, 2571-2582, (2010) · Zbl 1366.94606
[13] Phelps, K. T.; Villanueva, M., Ranks of \(q\)-ary 1-perfect codes, Design. Codes Cryptogr., 27, 139-144, (2002) · Zbl 1012.94019
[14] Phelps, K. T.; Rifà, J.; Villanueva, M., Kernels and p-kernels of pr-ary 1-perfect codes, Design. Codes Cryptogr., 37, 243-261, (2005) · Zbl 1142.94388
[15] Romanov, A. M., Hamiltonicity of minimum distance graphs of 1-perfect codes, Electron. J. Combin., 19, 1-6, (2012) · Zbl 1243.05142
[16] Schönheim, J., On linear and nonlinear single-error-correcting \(q\)-ary perfect codes, Inform. Control, 12, 23-26, (1968) · Zbl 0162.51203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.