zbMATH — the first resource for mathematics

SCDM-k: localized orbitals for solids via selected columns of the density matrix. (English) Zbl 1375.81255
Summary: The recently developed selected columns of the density matrix (SCDM) method [A. Damle et al., “Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix”, J. Chem. Theory Comput. 11, No. 4, 1463–1469 (2015; doi:10.1021/ct500985f)] is a simple, robust, efficient and highly parallelizable method for constructing localized orbitals from a set of delocalized Kohn-Sham orbitals for insulators and semiconductors with \(\Gamma\) point sampling of the Brillouin zone. In this work, we generalize the SCDM method to Kohn-Sham density functional theory calculations with k-point sampling of the Brillouin zone, which is needed for more general electronic structure calculations for solids. We demonstrate that our new method, called SCDM-k, is by construction gauge independent and a natural way to describe localized orbitals. SCDM-k computes localized orbitals without the use of an optimization procedure, and thus, does not suffer from the possibility of being trapped in a local minimum. Furthermore, the computational complexity of using SCDM-k to construct orthogonal and localized orbitals scales as \(\mathcal{O}(N \log N)\) where \(N\) is the total number of k-points in the Brillouin zone. SCDM-k is therefore efficient even when a large number of k-points are used for Brillouin zone sampling. We demonstrate the numerical performance of SCDM-k using systems with model potentials in two and three dimensions.

81V70 Many-body theory; quantum Hall effect
82D37 Statistical mechanics of semiconductors
Full Text: DOI
[1] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys. Rev., 136, B864-B871, (1964)
[2] Kohn, W.; Sham, L., Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133-A1138, (1965)
[3] Foster, J. M.; Boys, S. F., Canonical configurational interaction procedure, Rev. Mod. Phys., 32, 300-302, (1960)
[4] Marzari, N.; Vanderbilt, D., Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B, 56, 20, 12847-12865, (1997)
[5] Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D., Maximally localized Wannier functions: theory and applications, Rev. Mod. Phys., 84, 1419-1475, (2012)
[6] Wu, X.; Selloni, A.; Car, R., Order-N implementation of exact exchange in extended insulating systems, Phys. Rev. B, 79, 8, (2009)
[7] Gygi, F.; Duchemin, I., Efficient computation of Hartree-Fock exchange using recursive subspace bisection, J. Chem. Theory Comput., 9, 1, 582-587, (2012)
[8] King-Smith, R. D.; Vanderbilt, D., Theory of polarization of crystalline solids, Phys. Rev. B, 47, 1651-1654, (1993)
[9] Goedecker, S., Linear scaling electronic structure methods, Rev. Mod. Phys., 71, 1085-1123, (1999)
[10] Umari, P.; Stenuit, G.; Baroni, S., Optimal representation of the polarization propagator for large-scale GW calculations, Phys. Rev. B, 79, 20, (2009)
[11] Umari, P.; Stenuit, G.; Baroni, S., GW quasiparticle spectra from occupied states only, Phys. Rev. B, 81, (2010)
[12] Gygi, F., Compact representations of Kohn-Sham invariant subspaces, Phys. Rev. Lett., 102, (2009)
[13] E, W.; Li, T.; Lu, J., Localized bases of eigensubspaces and operator compression, Proc. Natl. Acad. Sci., 107, 4, 1273-1278, (2010) · Zbl 1205.15017
[14] Ozoliņš, V.; Lai, R.; Caflisch, R.; Osher, S., Compressed modes for variational problems in mathematics and physics, Proc. Natl. Acad. Sci., 110, 46, 18368-18373, (2013) · Zbl 1292.81024
[15] Aquilante, F.; Pedersen, T. B.; de Merás, A. S.; Koch, H., Fast noniterative orbital localization for large molecules, J. Chem. Phys., 125, 17, (2006)
[16] Damle, A.; Lin, L.; Ying, L., Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix, J. Chem. Theory Comput., 11, 4, 1463-1469, (2015)
[17] Kohn, W., Density functional and density matrix method scaling linearly with the number of atoms, Phys. Rev. Lett., 76, 3168-3171, (1996)
[18] Prodan, E.; Kohn, W., Nearsightedness of electronic matter, Proc. Natl. Acad. Sci., 102, 11635-11638, (2005)
[19] Benzi, M.; Boito, P.; Razouk, N., Decay properties of spectral projectors with applications to electronic structure, SIAM Rev., 55, 1, 3-64, (2013) · Zbl 1377.65155
[20] Blount, E., Formalisms of band theory, Solid State Phys., vol. 13, 305-373, (1962), Academic Press
[21] Cloizeaux, J. D., Energy bands and projection operators in a crystal: analytic and asymptotic properties, Phys. Rev., 135, A685-A697, (1964)
[22] Cloizeaux, J. D., Analytical properties of n-dimensional energy bands and Wannier functions, Phys. Rev., 135, A698-A707, (1964)
[23] Nenciu, G., Existence of the exponentially localised Wannier functions, Commun. Math. Phys., 91, 1, 81-85, (1983) · Zbl 0545.47012
[24] Martin, R., Electronic structure - basic theory and practical methods, (2004), Cambridge Univ. Pr. West Nyack, NY · Zbl 1152.74303
[25] Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188-5192, (1976)
[26] Businger, P.; Golub, G. H., Linear least squares solutions by Householder transformations, Numer. Math., 7, 3, 269-276, (1965) · Zbl 0142.11503
[27] Chandrasekaran, S.; Ipsen, I. C., On rank-revealing factorisations, SIAM J. Matrix Anal. Appl., 15, 2, 592-622, (1994) · Zbl 0796.65030
[28] Gu, M.; Eisenstat, S., Efficient algorithms for computing a strong rank-revealing qr factorization, SIAM J. Sci. Comput., 17, 4, 848-869, (1996) · Zbl 0858.65044
[29] MATLAB, Version 7.11.0 (R2010b), (2010), The MathWorks Inc. Natick, Massachusetts
[30] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK users’ guide, (1999), SIAM Philadelphia, PA · Zbl 0934.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.