×

zbMATH — the first resource for mathematics

Localisation of directional scale-discretised wavelets on the sphere. (English) Zbl 1376.42052
Summary: Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets.

MSC:
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A20 Sampling theory in information and communication theory
Software:
Healpix; S2LET
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antoine, J.-P.; Demanet, L.; Jacques, L.; Vandergheynst, P., Wavelets on the sphere: implementation and approximations, Appl. Comput. Harmon. Anal., 13, 3, 177-200, (2002) · Zbl 1021.42022
[2] Antoine, J.-P.; Vandergheynst, P., Wavelets on the n-sphere and related manifolds, J. Math. Phys., 39, 8, 3987-4008, (1998) · Zbl 0929.42029
[3] Antoine, J.-P.; Vandergheynst, P., Wavelets on the 2-sphere: a group theoretical approach, Appl. Comput. Harmon. Anal., 7, 1-30, (1999) · Zbl 0945.42023
[4] Audet, P., Directional wavelet analysis on the sphere: application to gravity and topography of the terrestrial planets, J. Geophys. Res., 116, E1, (2011)
[5] Audet, P., Toward mapping the effective elastic thickness of planetary lithospheres from a spherical wavelet analysis of gravity and topography, Phys. Earth Planet. Inter., 226, 0, 48-82, (2014)
[6] Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D., Asymptotics for spherical needlets, Ann. Statist., 37, 3, 1150-1171, (2009) · Zbl 1160.62087
[7] Barreiro, R. B.; Hobson, M. P.; Lasenby, A. N.; Banday, A. J.; Górski, K. M.; Hinshaw, G., Testing the gaussianity of the COBE-DMR data with spherical wavelets, Mon. Not. R. Astron. Soc., 318, 475-481, (2000)
[8] Bennett, C. L.; Larson, D.; Weiland, J. L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Dunkley, J.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L., Nine-year wilkinson microwave anisotropy probe (WMAP) observations: final maps and results, Astrophys. J., Suppl. Ser., 208, 20, (Oct. 2013)
[9] Bobin, J.; Starck, J.-L.; Sureau, F.; Basak, S., Sparse component separation for accurate cosmic microwave background estimation, Astronom. Astrophys., 550, (Feb. 2013)
[10] Bogdanova, I.; Vandergheynst, P.; Antoine, J.-P.; Jacques, L.; Morvidone, M., Discrete wavelet frames on the sphere, (Signal Processing Conference, 2004 12th European, (Sept. 2004)), 49-52
[11] Bogdanova, I.; Vandergheynst, P.; Antoine, J.-P.; Jacques, L.; Morvidone, M., Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal., 19, 2, 223-252, (2005) · Zbl 1082.42026
[12] Bond, J. R.; Efstathiou, G., The statistics of cosmic background radiation fluctuations, Mon. Not. R. Astron. Soc., 226, 655-687, (Jun. 1987)
[13] Charléty, J.; Nolet, G.; Voronin, S.; Loris, I.; Simons, F. J.; Daubechies, I.; Sigloch, K., Inversion with a sparsity constraint: application to mantle tomography, (EGU General Assembly Conference Abstracts, (2012))
[14] Dahlke, S.; Maass, P., Continuous wavelet transforms with applications to analyzing functions on sphere, J. Fourier Anal. Appl., 2, 379-396, (1996) · Zbl 0902.42017
[15] Delabrouille, J.; Cardoso, J.-F.; Le Jeune, M.; Betoule, M.; Fay, G.; Guilloux, F., A full sky, low foreground, high resolution CMB map from WMAP, Astronom. Astrophys., 493, 835-857, (Jan. 2009)
[16] Dodelson, S., Modern cosmology, (2003), Academic Press
[17] Durastanti, C.; Fantaye, Y.; Hansen, F.; Marinucci, D.; Pesenson, I. Z., Simple proposal for radial 3D needlets, Phys. Rev. D, 90, 10, (Nov. 2014)
[18] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher transcendental functions, vol. 2, (1981), Krieger New York · Zbl 0051.30303
[19] Freeden, W.; Windheuser, U., Combined spherical harmonic and wavelet expansion - a future concept in the Earth’s gravitational determination, Appl. Comput. Harmon. Anal., 4, 1-37, (1997) · Zbl 0865.42029
[20] Freeman, W.; Adelson, E., The design and use of steerable filters, IEEE Trans. Pattern Anal., 13, 9, 891-906, (1991)
[21] Geller, D.; Hansen, F. K.; Marinucci, D.; Kerkyacharian, G.; Picard, D., Spin needlets for cosmic microwave background polarization data analysis, Phys. Rev. D, 78, 12, (2008)
[22] Geller, D.; Lan, X.; Marinucci, D., Spin needlets spectral estimation, Electron. J. Stat., 3, 1497-1530, (Jul. 2009)
[23] Geller, D.; Marinucci, D., Spin wavelets on the sphere, J. Fourier Anal. Appl., 16, 6, 840-884, (Nov. 2010)
[24] Geller, D.; Marinucci, D., Mixed needlets, J. Math. Anal. Appl., 375, 2, 610-630, (Jun. 2011)
[25] Geller, D.; Mayeli, A., Nearly tight frames and space-frequency analysis on compact manifolds, Math. Z., 263, 235-264, (Jun. 2009)
[26] Goldberg, J. N.; Macfarlane, A. J.; Newman, E. T.; Rohrlich, F.; Sudarshan, E. C.G., Spin-s spherical harmonics and ð, J. Math. Phys., 8, 11, 2155-2161, (1967) · Zbl 0155.57402
[27] Górski, K. M.; Hivon, E.; Banday, A. J.; Wandelt, B. D.; Hansen, F. K.; Reinecke, M.; Bartelmann, M., Healpix - a framework for high resolution discretization and fast analysis of data distributed on the sphere, Astrophys. J., 622, 759-771, (2005)
[28] Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D. N.; Bennett, C. L.; Dunkley, J.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.; Page, L.; Smith, K. M.; Weiland, J. L.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L., Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results, Astrophys. J., Suppl. Ser., 208, 19, (Oct. 2013)
[29] Holschneider, M., Continuous wavelet transforms on the sphere, J. Math. Phys., 37, 4156-4165, (1996) · Zbl 0859.42022
[30] Lan, X.; Marinucci, D., The needlets bispectrum, Electron. J. Stat., 2, 332-367, (2008) · Zbl 1320.62106
[31] Lanusse, F.; Rassat, A.; Starck, J.-L., Spherical 3D isotropic wavelets, Astronom. Astrophys., 540, (Apr. 2012)
[32] Leistedt, B.; McEwen, J. D., Exact wavelets on the ball, IEEE Trans. Signal Process., 60, 12, 6257-6269, (2012) · Zbl 1393.94137
[33] Leistedt, B.; McEwen, J. D.; Vandergheynst, P.; Wiaux, Y., S2LET: a code to perform fast wavelet analysis on the sphere, Astronom. Astrophys., 558, A128, 1-9, (2013)
[34] Loris, I.; Simons, F. J.; Daubechies, I.; Nolet, G.; Fornasier, M.; Vetter, P.; Judd, S.; Voronin, S.; Vonesch, C.; Charléty, J., A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis, (EGU General Assembly Conference Abstracts, vol. 12, (May 2010)), 6033
[35] Marinucci, D.; Peccati, G., Random fields on the sphere: representation, limit theorem and cosmological applications, (2011), Cambridge University Press · Zbl 1260.60004
[36] Marinucci, D.; Pietrobon, D.; Balbi, A.; Baldi, P.; Cabella, P.; Kerkyacharian, G.; Natoli, P.; Picard, D.; Vittorio, N., Spherical needlets for cosmic microwave background data analysis, Mon. Not. R. Astron. Soc., 383, 539-545, (2008)
[37] McEwen, J. D.; Büttner, M.; Leistedt, B.; Peiris, H. V.; Vandergheynst, P.; Wiaux, Y., On spin scale-discretised wavelets on the sphere for the analysis of CMB polarisation, (Proceedings IAU Symposium, vol. 306, (2014))
[38] McEwen, J. D.; Büttner, M.; Leistedt, B.; Peiris, H. V.; Wiaux, Y., A novel sampling theorem on the rotation group, IEEE Signal Process. Lett., 22, 12, 2425-2429, (2015)
[39] McEwen, J. D.; Hobson, M. P.; Lasenby, A. N., A directional continuous wavelet transform on the sphere, (2006)
[40] McEwen, J. D.; Hobson, M. P.; Lasenby, A. N.; Mortlock, D. J., A high-significance detection of non-gaussianity in the WMAP 1-year data using directional spherical wavelets, Mon. Not. R. Astron. Soc., 359, 1583-1596, (2005)
[41] McEwen, J. D.; Hobson, M. P.; Lasenby, A. N.; Mortlock, D. J., A high-significance detection of non-gaussianity in the WMAP 3-year data using directional spherical wavelets, Mon. Not. R. Astron. Soc., 371, L50-L54, (2006)
[42] McEwen, J. D.; Hobson, M. P.; Lasenby, A. N.; Mortlock, D. J., Non-gaussianity detections in the Bianchi VII_h corrected WMAP 1-year data made with directional spherical wavelets, Mon. Not. R. Astron. Soc., 369, 1858-1868, (2006)
[43] McEwen, J. D.; Hobson, M. P.; Lasenby, A. N.; Mortlock, D. J., A high-significance detection of non-gaussianity in the WMAP 5-year data using directional spherical wavelets, Mon. Not. R. Astron. Soc., 388, 2, 659-662, (2008)
[44] McEwen, J. D.; Hobson, M. P.; Mortlock, D. J.; Lasenby, A. N., Fast directional continuous spherical wavelet transform algorithms, IEEE Trans. Signal Process., 55, 2, 520-529, (2007) · Zbl 1391.94116
[45] McEwen, J. D.; Leistedt, B., Fourier-Laguerre transform, convolution and wavelets on the ball, (10th International Conference on Sampling Theory and Applications, SampTA, (2013)), 329-333
[46] McEwen, J. D.; Leistedt, B.; Büttner, M.; Peiris, H. V.; Wiaux, Y., Directional spin wavelets on the sphere, IEEE Trans. Signal Process., (2016), submitted for publication
[47] McEwen, J. D.; Scaife, A. M.M., Simulating full-sky interferometric observations, Mon. Not. R. Astron. Soc., 389, 3, 1163-1178, (2008)
[48] McEwen, J. D.; Vandergheynst, P.; Wiaux, Y., On the computation of directional scale-discretized wavelet transforms on the sphere, (SPIE Wavelets and Sparsity XV, vol. 8858, (2013))
[49] McEwen, J. D.; Vielva, P.; Hobson, M. P.; Martínez-González, E.; Lasenby, A. N., Detection of the ISW effect and corresponding dark energy constraints made with directional spherical wavelets, Mon. Not. R. Astron. Soc., 373, 1211-1226, (2007)
[50] McEwen, J. D.; Vielva, P.; Wiaux, Y.; Barreiro, R. B.; Cayón, L.; Hobson, M. P.; Lasenby, A. N.; Martínez-González, E.; Sanz, J. L., Cosmological applications of a wavelet analysis on the sphere, J. Fourier Anal. Appl., 13, 4, 495-510, (2007) · Zbl 1206.85002
[51] McEwen, J. D.; Wiaux, Y., A novel sampling theorem on the sphere, IEEE Trans. Signal Process., 59, 12, 5876-5887, (2011) · Zbl 1393.94696
[52] McEwen, J. D.; Wiaux, Y.; Eyers, D. M., Data compression on the sphere, Astronom. Astrophys., 531, (2011)
[53] McEwen, J. D.; Wiaux, Y.; Hobson, M. P.; Vandergheynst, P.; Lasenby, A. N., Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures, Mon. Not. R. Astron. Soc., 384, 4, 1289-1300, (2008)
[54] Mhaskar, H.; Narcowich, F.; Prestin, J.; Ward, J., Polynomial frames on the sphere, Adv. Comput. Math., 13, 4, 387-403, (2000) · Zbl 0974.41004
[55] Narcowich, F. J.; Petrushev, P.; Ward, J. D., Localized tight frames on spheres, SIAM J. Math. Anal., 38, 2, 574-594, (2006) · Zbl 1143.42034
[56] Narcowich, F. J.; Ward, J. D., Non-stationary wavelets on the m-sphere for scattered data, Appl. Comput. Harmon. Anal., 3, 324-336, (1996) · Zbl 0858.42025
[57] Newman, E. T.; Penrose, R., Note on the Bondi-metzner-Sachs group, J. Math. Phys., 7, 5, 863-870, (1966)
[58] Pietrobon, D.; Balbi, A.; Cabella, P.; Gorski, K. M., Needatool: a needlet analysis tool for cosmological data processing, Astrophys. J., 723, 1-9, (Nov. 2010)
[59] Pietrobon, D.; Balbi, A.; Marinucci, D., Integrated Sachs-Wolfe effect from the cross-correlation of WMAP 3-year and NVSS: new results and constraints on dark energy, Phys. Rev. D, 74, 4, (Aug. 2006)
[60] Planck 2013 results. XII. diffuse component separation, Astronom. Astrophys., 571, (2014)
[61] Planck 2013 results. XXIII. isotropy and statistics of the CMB, Astronom. Astrophys., 571, (2014)
[62] Planck 2013 results. XXIV. constraints on primordial non-gaussianity, Astronom. Astrophys., 571, (2014)
[63] Planck 2013 results. XXV. searches for cosmic strings and other topological defects, Astronom. Astrophys., 571, (2014)
[64] Potts, D.; Tasche, M., Interpolatory wavelets on the sphere, (Approximation Theory VIII, (1995)), 335-342 · Zbl 0927.42029
[65] Sanz, J. L.; Herranz, D.; López-Caniego, M.; Argüeso, F., Wavelets on the sphere - application to the detection problem, (EUSIPCO, (Sep. 2006))
[66] Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I., Poisson denoising on the sphere: application to the Fermi gamma ray space telescope, Astronom. Astrophys., 517, (Jul. 2010)
[67] Schröder, P.; Sweldens, W., Spherical wavelets: efficiently representing functions on the sphere, (Computer Graphics Proceedings, SIGGRAPH ‘95, (1995)), 161-172
[68] Simons, F. J.; Loris, I.; Brevdo, E.; Daubechies, I. C., Wavelets and wavelet-like transforms on the sphere and their application to geophysical data inversion, (SPIE Wavelets and Sparsity XIV, (2011))
[69] Simons, F. J.; Loris, I.; Nolet, G.; Daubechies, I. C.; Voronin, S.; Judd, J. S.; Vetter, P. A.; Charléty, J.; Vonesch, C., Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity, Geophys. J. Int., 187, 969-988, (Nov. 2011)
[70] Starck, J.; Moudden, Y.; Bobin, J., Polarized wavelets and curvelets on the sphere, Astronom. Astrophys., 497, 931-943, (Apr. 2009)
[71] Starck, J.-L.; Moudden, Y.; Abrial, P.; Nguyen, M., Wavelets, ridgelets and curvelets on the sphere, Astronom. Astrophys., 446, 1191-1204, (Feb. 2006)
[72] Sweldens, W., The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal., 29, 2, 511-546, (1997) · Zbl 0911.42016
[73] Torrésani, B., Position-frequency analysis for signals defined on spheres, Signal Process., 43, 341-346, (1995) · Zbl 0901.94004
[74] Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K., Quantum theory of angular momentum, (1989), World Scientific Singapore · Zbl 0725.00003
[75] Vielva, P.; Martínez-González, E.; Barreiro, R. B.; Sanz, J. L.; Cayón, L., Detection of non-gaussianity in the WMAP 1-year data using spherical wavelets, Astrophys. J., 609, 22-34, (2004)
[76] Vielva, P.; Martínez-González, E.; Tucci, M., Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs-Wolfe effect and dark energy constraints, Mon. Not. R. Astron. Soc., 365, 891-901, (2006)
[77] Vielva, P.; Wiaux, Y.; Martínez-González, E.; Vandergheynst, P., Steerable wavelet analysis of CMB structures alignment, New Astron. Rev., 50, 880-888, (2006)
[78] Wiaux, Y.; Jacques, L.; Vandergheynst, P., Correspondence principle between spherical and Euclidean wavelets, Astrophys. J., 632, 15-28, (2005)
[79] Wiaux, Y.; Jacques, L.; Vandergheynst, P., Fast spin ±2 spherical harmonics transforms, J. Comput. Phys., 226, 2359, (2005) · Zbl 1255.33007
[80] Wiaux, Y.; Jacques, L.; Vielva, P.; Vandergheynst, P., Fast directional correlation on the sphere with steerable filters, Astrophys. J., 652, 820-832, (2006)
[81] Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O., Exact reconstruction with directional wavelets on the sphere, Mon. Not. R. Astron. Soc., 388, 2, 770-788, (2008)
[82] Wiaux, Y.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.; Vandergheynst, P., Non-gaussianity analysis on local morphological measures of WMAP data, Mon. Not. R. Astron. Soc., 385, 939-947, (Apr. 2008)
[83] Wiaux, Y.; Vielva, P.; Martínez-González, E.; Vandergheynst, P., Global universe anisotropy probed by the alignment of structures in the cosmic microwave background, Phys. Rev. Lett., 96, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.