On nomenclature for, and the relative merits of, two formulations of skew distributions. (English) Zbl 1376.60024

Summary: We examine some skew distributions used extensively within the model-based clustering literature in recent years, paying special attention to claims that have been made about their relative efficacy. Theoretical arguments are provided as well as real data examples.


60E05 Probability distributions: general theory
62E15 Exact distribution theory in statistics
Full Text: DOI arXiv


[1] Azzalini, A., The skew-normal and related families. IMS monographs, (2014), Cambridge University Press
[2] Azzalini, A.; Capitanio, A., Statistical applications of the multivariate skew normal distribution, J. R. Stat. Soc. Ser. B, 61, 3, 579-602, (1999) · Zbl 0924.62050
[3] Azzalini, A.; Capitanio, A., Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\) distribution, J. R. Stat. Soc. Ser. B, 65, 2, 367-389, (2003) · Zbl 1065.62094
[4] Azzalini, A.; Dalla Valle, A., The multivariate skew-normal distribution, Biometrika, 83, 715-726, (1996) · Zbl 0885.62062
[5] Branco, M. D.; Dey, D. K., A general class of multivariate skew-elliptical distributions, J. Multivariate Anal., 79, 99-113, (2001) · Zbl 0992.62047
[6] Campbell, N. A.; Mahon, R. J., A multivariate study of variation in two species of rock crab of genus leptograpsus, Aust. J. Zool., 22, 417-425, (1974)
[7] Hubert, L.; Arabie, P., Comparing partitions, J. Classification, 2, 193-218, (1985)
[8] Lee, S. X.; McLachlan, G. J., On mixtures of skew normal and skew \(t\)-distributions, Adv. Data Anal. Classif., 7, 241-266, (2013) · Zbl 1273.62115
[9] Lee, S. X.; McLachlan, G. J., Emmixuskew: an R package for Fitting mixtures of multivariate skew \(t\) distributions via the EM algorithm, J. Stat. Softw., 55, 12, 1-22, (2013)
[10] Lee, S.; McLachlan, G. J., Finite mixtures of multivariate skew \(t\)-distributions: some recent and new results, Stat. Comput., 24, 181-202, (2014), Published online 20 October 2012 · Zbl 1325.62107
[11] Mardia, K., Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530, (1970) · Zbl 0214.46302
[12] R: A language and environment for statistical computing, (2014), R Foundation for Statistical Computing Vienna, Austria, R Core Team
[13] Sahu, K.; Dey, D. K.; Branco, M. D., A new class of multivariate skew distributions with applications to Bayesian regression models, Canad. J. Statist., 31, 2, 129-150, (2003), Corrigendum: vol. 37 (2009), 301-302 · Zbl 1039.62047
[14] Venables, W. N.; Ripley, B. D., Modern applied statistics with S, (2002), Springer New York · Zbl 1006.62003
[15] Wang, K., Ng, A., McLachlan, G., 2013. EMMIXskew: The EM Algorithm and Skew Mixture Distribution. R package version 1.0.1.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.