×

zbMATH — the first resource for mathematics

On the inherent robustness of optimal and suboptimal nonlinear MPC. (English) Zbl 1376.93033
Summary: Suboptimal Model Predictive Control (MPC) is a control algorithm that uses suboptimal solutions to optimal control problems to provide control actions quickly. In MPC, terminal control laws and terminal region constraints are frequently used to ensure recursive feasibility and stability. Suboptimal MPC is proven to be inherently robust for systems with soft terminal region constraints in G. Pannocchia et al. [Syst. Control Lett. 60, No. 9, 747–755 (2011; Zbl 1226.93110)]. We extend that work to systems with hard terminal region constraints. If these hard constraints are defined as sublevel sets of appropriate terminal cost functions, a well-chosen initial guess (warm start) for the optimization algorithm is robustly feasible. As a result, the system controlled by suboptimal MPC admits an ISS-Lyapunov function and is therefore inherently robust.
The authors of S. Yu et al. [Automatica 50, No. 9, 2269–2280 (2014; Zbl 1297.93077)] noted that the result in [Pannocchia, loc. cit] applied only to systems with continuous optimal cost functions. However, discontinuous optimal cost functions may be present in systems with hard terminal region constraints. We include a simple example of a continuous dynamical system with a provably discontinuous optimal value function that, as a consequence of the main result of this work, is inherently robust. This example is to our knowledge the first such system reported in the literature.

MSC:
93B35 Sensitivity (robustness)
93B40 Computational methods in systems theory (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rawlings, J. B.; Mayne, D. Q., Model Predictive Control: Theory and Design, 576, (2009), Nob Hill Publishing Madison, WI
[2] Grimm, G.; Messina, M. J.; Tuna, S. E.; Teel, A. R., Examples when nonlinear model predictive control is nonrobust, Automatica, 40, 1729-1738, (2004) · Zbl 1079.93018
[3] D. Limón Marruedo, T. Álamo, E.F. Camacho, Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive disturbances, in: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, 2002, pp. 4619-4624
[4] Yu, S.; Reble, M.; Chen, H.; Allgöwer, F., Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control, Automatica, 50, 9, 2269-2280, (2014) · Zbl 1297.93077
[5] Grimm, G.; Messina, M. J.; Tuna, S. E.; Teel, A. R., Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52, 10, 1856-1870, (2007) · Zbl 1366.93463
[6] Limon, D.; Alamo, T.; Raimondo, D.; Muñoz de la Peña, D.; Bravo, J.; Ferramosca, A.; Camacho, E., Input-to-state stability: A unifying framework for robust model predictive control, (Magni, L.; Raimondo, D. M.; Allgöwer, F., Lecture Notes in Control and Information Sciences, Lecture Notes in Control and Information Sciences, vol. 384, (2009), Springer-Verlag Berlin Heidelberg), 1-26 · Zbl 1195.93128
[7] Roset, B.; Heemels, W.; Lazar, M.; Nijmeijer, H., On robustness of constrained discrete-time systems to state measurement errors, Automatica, 44, 4, 1161-1165, (2008)
[8] Lazar, M.; Heemels, W.; Teel, A., Further input-to-state stability subtleties for discrete-time systems, IEEE Trans. Automat. Control, 58, 6, 1609-1613, (2013) · Zbl 1369.93558
[9] Lazar, M.; Heemels, W. P.M. H., Predictive control of hybrid systems: input-to-state stability results for sub-optimal solutions, Automatica, 45, 1, 180-185, (2009) · Zbl 1154.93429
[10] Picasso, B.; Desiderio, D.; Scattolini, R., Robust stability analysis of nonlinear discrete-time systems with application to MPC, IEEE Trans. Automat. Control, 57, 1, 185-191, (2012) · Zbl 1369.93466
[11] Scokaert, P. O.M.; Mayne, D. Q.; Rawlings, J. B., Suboptimal model predictive control (feasibility implies stability), IEEE Trans. Automat Control, 44, 3, 648-654, (1999) · Zbl 1056.93619
[12] Pannocchia, G.; Rawlings, J. B.; Wright, S. J., Conditions under which suboptimal nonlinear MPC is inherently robust, Systems Control Lett., 60, 747-755, (2011) · Zbl 1226.93110
[13] Zeilinger, M. N.; Raimondo, D. M.; Domahidi, A.; Morari, M.; Jones, C. N., On real-time robust model predictive control, Automatica, 50, 3, 683-694, (2014) · Zbl 1298.93160
[14] D. Limón Marruedo, T. Álamo, E.F. Camacho, Stability analysis of systems with bounded additive uncertainties based on invariant sets: stability and feasibility of MPC, in: Proceedings of the American Control Conference, Anchorage, Alaska, 2002, pp. 364-369
[15] Meadows, E. S.; Henson, M. A.; Eaton, J. W.; Rawlings, J. B., Receding horizon control and discontinuous state feedback stabilization, Internat. J. Control, 62, 5, 1217-1229, (1995) · Zbl 0841.93066
[16] J.B. Rawlings, M.J. Risbeck, On the equivalence between statements with epsilon-delta and k-functions, 2015-01,2015. URL http://jbrwww.che.wisc.edu/tech-reports/twccc-2015-01.pdf
[17] Jiang, Z.-P.; Wang, Y., Input-to-state stability for discrete-time nonlinear systems, Automatica, 37, 857-869, (2001) · Zbl 0989.93082
[18] Tenny, M. J.; Wright, S. J.; Rawlings, J. B., Nonlinear model predictive control via feasibility-perturbed sequential quadratic programming, Comput. Optim. Appl., 28, 1, 87-121, (2004) · Zbl 1056.90140
[19] D.A. Allan, M.J. Risbeck, J.B. Rawlings, Stability and robustness of model predictive control with discrete actuators, in: American Control Conference, Boston, MA, 2016, pp. 32-37
[20] Rawlings, J. B.; Ji, L., Optimization-based state estimation: current status and some new results, J. Process Control, 22, 1439-1444, (2012)
[21] J.B. Rawlings, D.Q. Mayne, Postface to model predictive control: theory and design, 2011. http://jbrwww.che.wisc.edu/home/jbraw/mpc/postface.pdf
[22] Khalil, H. K., Nonlinear systems, (2002), Prentice-Hall Upper Saddle River, NJ · Zbl 0626.34052
[23] Bartle, R. G.; Sherbert, D. R., Introduction to real analysis, (2000), John Wiley & Sons, Inc. New York · Zbl 0494.26002
[24] Rudin, W., Principles of mathematical analysis, (1976), McGraw-Hill New York · Zbl 0148.02903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.