×

zbMATH — the first resource for mathematics

FIESTA4: optimized Feynman integral calculations with GPU support. (English) Zbl 1378.65075
Summary: This paper presents a new major release of the program FIESTA (Feynman Integral Evaluation by a Sector decomposiTion Approach). The new release is mainly aimed at optimal performance at large scales when one is increasing the number of sampling points in order to reduce the uncertainty estimates. The release now supports graphical processor units (GPUs) for the numerical integration, methods to optimize cluster-usage, as well as other speed, memory, and stability improvements.

MSC:
65D30 Numerical integration
65Y15 Packaged methods for numerical algorithms
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81-04 Software, source code, etc. for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nuclear Phys., B 585, 741-759, (2000) · Zbl 1042.81565
[2] Binoth, T.; Heinrich, G., Numerical evaluation of multi-loop integrals by sector decomposition, Nuclear Phys., B 680, 375-388, (2004) · Zbl 1043.81630
[3] Binoth, T.; Heinrich, G., Numerical evaluation of phase space integrals by sector decomposition, Nuclear Phys., B 693, 134-148, (2004) · Zbl 1151.81352
[4] Heinrich, G., Sector decomposition, Internat. J. Modern Phys., A 23, 1457-1486, (2008) · Zbl 1153.81522
[5] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Comm., 178, 596-610, (2008) · Zbl 1196.81010
[6] Bogner, C.; Weinzierl, S., Blowing up Feynman integrals, Nucl. Phys. Proc. Suppl., 183, 256-261, (2008)
[7] Smirnov, V. A., Analytic tools for Feynman integrals, Springer Tracts Modern Phys., 250, 1-296, (2012) · Zbl 1268.81004
[8] Carter, J.; Heinrich, G., Secdec: A general program for sector decomposition, Comput. Phys. Comm., 182, 1566-1581, (2011) · Zbl 1262.81119
[9] Borowka, S.; Carter, J.; Heinrich, G., Numerical evaluation of multi-loop integrals for arbitrary kinematics with secdec 2.0, Comput. Phys. Comm., 184, 396-408, (2013)
[10] Borowka, S.; Carter, J.; Heinrich, G., Secdec: A tool for numerical multi-loop calculations, J. Phys.: Conf. Ser., 368, (2012)
[11] Borowka, S.; Heinrich, G., Numerical evaluation of massive multi-loop integrals with secdec, PoS, LL2012, 038, (2012)
[12] Borowka, S.; Heinrich, G., Massive non-planar two-loop four-point integrals with secdec 2.1, Comput. Phys. Comm., 184, 2552-2561, (2013) · Zbl 1349.81012
[13] Borowka, S.; Heinrich, G., Numerical multi-loop calculations with secdec, J. Phys.: Conf. Ser., 523, (2014)
[14] Borowka, S.; Heinrich, G., Numerical multi-loop calculations with the program secdec, J. Phys.: Conf. Ser., 608, (2015)
[15] Borowka, S.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T., Secdec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Comm., 196, 470-491, (2015) · Zbl 1360.81013
[16] Smirnov, A. V.; Tentyukov, M. N., Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Comm., 180, 735-746, (2009) · Zbl 1198.81044
[17] Smirnov, A. V.; Smirnov, V. A.; Tentyukov, M., FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Comm., 182, 790-803, (2011) · Zbl 1214.81171
[18] Smirnov, A. V., FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Comm., 185, 2090-2100, (2014) · Zbl 1351.81078
[19] Hahn, T., Concurrent Cuba, J. Phys.: Conf. Ser., 608, (2015) · Zbl 1380.65471
[20] Marquard, P.; Smirnov, A. V.; Smirnov, V. A.; Steinhauser, M., Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett., 114, (2015)
[21] Sadovnichy, V.; Tikhonravov, A.; Voevodin, V.; Opanasenko, V., “lomonosov”: supercomputing at Moscow state university, (Contemporary High Performance Computing: From Petascale toward Exascale, Computational Science, (2013), Chapman & Hall/CRC Boca Raton, United States), 283-307
[22] Lee, R., Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nuclear Phys. B, 830, 474-492, (2010) · Zbl 1203.83051
[23] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., Analytic results for massless three-loop form factors, J. High Energy Phys., 04, 020, (2010) · Zbl 1272.81196
[24] Lee, R. N.; Smirnov, A. V.; Smirnov, V. A., Master integrals for four-loop massless propagators up to transcendentality weight twelve, Nuclear Phys., B 856, 95-110, (2012) · Zbl 1246.81057
[25] Lee, R. N.; Smirnov, V. A., The dimensional recurrence and analyticity method for multicomponent master integrals: using unitarity cuts to construct homogeneous solutions, J. High Energy Phys., 1212, 104, (2012)
[26] Hahn, T., CUBA: A library for multidimensional numerical integration, Comput. Phys. Comm., 168, 78-95, (2005) · Zbl 1196.65052
[27] Speer, E. R., Analytic renormalization, J. Math. Phys., 9, 1404-1410, (1968)
[28] Kaneko, T.; Ueda, T., A geometric method of sector decomposition, Comput. Phys. Comm., 181, 1352-1361, (2010) · Zbl 1219.65014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.