×

Dissipative approach to sliding mode observers design for uncertain mechanical systems. (English) Zbl 1378.93029

Summary: A class of nonlinear uncertain mechanical systems with the Coriolis term, is considered. Since these systems generally do not satisfy the bounded-input-bounded-state property, a global sliding-mode observer with theoretically exact finite-time convergence using dissipative properties, is proposed.

MSC:

93B12 Variable structure systems
93B07 Observability
70Q05 Control of mechanical systems
93C10 Nonlinear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Apaza-Perez, W. A.; Fridman, L.; Moreno, J., Higher order sliding-mode observers with scaled dissipative stabilisers, International Journal of Control (2017) · Zbl 1403.93061
[2] Apaza-Perez, W. A., Moreno, J., & Fridman, L. (2016). Global sliding-mode observers for a class of mechanical systems with disturbances. In IFAC-PapersOnLine, NOLCOS-2016, vol. 49http://dx.doi.org/10.1016/j.ifacol.2016.10.205; Apaza-Perez, W. A., Moreno, J., & Fridman, L. (2016). Global sliding-mode observers for a class of mechanical systems with disturbances. In IFAC-PapersOnLine, NOLCOS-2016, vol. 49http://dx.doi.org/10.1016/j.ifacol.2016.10.205
[3] Astolfi, A.; Ortega, R.; Venkatraman, A., A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints, Automatica, 46, 1, 182-189 (2010) · Zbl 1213.93090
[4] Barbot, J.; Boukhobza, T.; Djemai, M., Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs, Asian Journal of Control, 5, 513-527 (2003)
[5] Barbot, J.; Floquet, T., Iterative higher order sliding mode observer for nonlinear systems with unknown inputs, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 17, 1019-1033 (2010) · Zbl 1206.93020
[6] Bejarano, F.; Pisano, A.; Usai, E., Finite-time converging jump observer for switched linear systems with unknown inputs, Nonlinear Analysis. Hybrid Systems, 2, 174-188 (2011) · Zbl 1225.93032
[7] Besançon, G., Global output feedback tracking control for a class of Lagrangian systems, Automatica, 36, 1915-1921 (2000) · Zbl 0959.93510
[8] Besançon, G., (Nonlinear observers and applications. Nonlinear observers and applications, LNCIS, Vol. 363 (2007), Springer-Verlag: Springer-Verlag Berlin)
[9] Davila, J.; Fridman, L.; Levant, A., Second-order sliding-mode observer for mechanical systems, IEEE Transactions on Automatic Control, 50, 1785-1789 (2005) · Zbl 1365.93071
[10] Deimling, K., Multivalued differential equations (1992), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0760.34002
[11] Edwards, C.; Spurgeon, S. K.; Tan, C. P., On the development and application of sliding mode observer, (Yu, X.; Xu, J.-X., Variable structure systems: Towards the \(2 1^{s t}\) century. Variable structure systems: Towards the \(2 1^{s t}\) century, LNCIS, Vol. 274 (2002), Springer-Verlag: Springer-Verlag London), 253-282 · Zbl 1101.93306
[12] Efimov, D., Zolghadri, A., Cieslak, J., & Henry, D. (2012). Input estimation via sliding-mode differentiation for early OFC detection. In 8th IFAC Symposium on fault detection, supervision and safety of technical processes, vol. 2; Efimov, D., Zolghadri, A., Cieslak, J., & Henry, D. (2012). Input estimation via sliding-mode differentiation for early OFC detection. In 8th IFAC Symposium on fault detection, supervision and safety of technical processes, vol. 2
[13] Filippov, A. F., Differential equations with discontinuous righthand sides: Control systems (mathematics and its applications) (1988), Springer: Springer Netherlands · Zbl 0664.34001
[14] Fridman, L.; Shtessel, Y.; Edwards, C.; Yan, X., Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems, International Journal of Robust and Nonlinear Control, 18, 399-412 (2008) · Zbl 1284.93057
[15] Gauthier, J.; Hammouri, J.; Othman, S., A simple observer for nonlinear systems. Applications to bioreactors, IEEE Transactions on Automatic Control, 37, 879-880 (1992) · Zbl 0775.93020
[16] Hautus, M., Strong detectability and observers, Linear Algebra and its Applications, 50, 353-368 (1983) · Zbl 0528.93018
[17] Krener, A.; Respondek, W., Nonlinear observers with linearizable error dynamics, SIAM Journal on Control and Optimization, 23, 2, 197-216 (1985) · Zbl 0569.93035
[18] Levant, A., Robust exact differentiation via sliding mode technique, Automatica, 34, 379-384 (1998) · Zbl 0915.93013
[19] Moreno, J. (2004). Observer design for nonlinear systems: a dissipative approach. In Proceedings of the 2nd IFAC symposium on systems, structure and control; Moreno, J. (2004). Observer design for nonlinear systems: a dissipative approach. In Proceedings of the 2nd IFAC symposium on systems, structure and control
[20] Moreno, J., Approximate observer error linearization by dissipativity methods, (Meurer, T.; Graichen, K.; Gilles, E. D., Control and observer design for nonlinear finite and infinite dimensional systems. Control and observer design for nonlinear finite and infinite dimensional systems, LNCIS, Vol. 322 (2005), Springer-Verlag: Springer-Verlag Berlin), 35-51 · Zbl 1100.93008
[21] Moreno, J. (2009). A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In Electrical engineering, computing science and automatic control, 6th int. conf. on; Moreno, J. (2009). A linear framework for the robust stability analysis of a generalized super-twisting algorithm. In Electrical engineering, computing science and automatic control, 6th int. conf. on
[22] Moreno, J., Lyapunov approach for analysis and design of second order sliding mode algorithms, (Fridman, L.; Moreno, J.; Iriarte, R., Sliding modes after the first decade of the 21st century (2011), Springer: Springer Berlin Heidelberg), 113-149
[23] Pisano, A.; Usai, E., Sliding mode control: A survey with applications in math, Mathematics and Computers in Simulation, 81, 954-979 (2011) · Zbl 1214.93030
[24] Rajamani, R., Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control, 43, 397-401 (1998) · Zbl 0905.93009
[25] Rocha-Cózatl, E., & Moreno, J. (2004). Dissipativity and design of unknown input observers for nonlinear systems. In Proceedings of the 6th IFAC symposium on nonlinear control systems; Rocha-Cózatl, E., & Moreno, J. (2004). Dissipativity and design of unknown input observers for nonlinear systems. In Proceedings of the 6th IFAC symposium on nonlinear control systems
[26] Rocha-Cózatl, E.; Moreno, J., Dissipative design of unknown input observers for systems with sector nonlinearities, International Journal of Robust and Nonlinear Control, 21, 1623-1644 (2011) · Zbl 1227.93018
[27] Spong, M. W.; Hutchinson, S.; Vidyasagar, M., Robot modeling and control, vol. 3 (2006), wiley: wiley New York
[28] Spurgeon, S., Sliding mode observers: a survey, International Journal of Systems Science, 39 (8), 751-764 (2008) · Zbl 1283.93066
[29] Xian, B.; de Queiroz, M.; Dawson, D.; McIntyre, M., A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems, Automatica, 695-700 (2004) · Zbl 1051.93040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.