×

zbMATH — the first resource for mathematics

An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. (English) Zbl 1379.65077

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65T60 Numerical methods for wavelets
35L02 First-order hyperbolic equations
35Q82 PDEs in connection with statistical mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] B. K. Alpert, A class of bases in L\(^2\) for the sparse representation of integral operators, SIAM J. Math. Anal., 24 (1993), pp. 246–262. · Zbl 0764.42017
[2] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys., 182 (2002), pp. 149–190. · Zbl 1015.65046
[3] M. A. Alves, P. Cruz, A. Mendes, F. D. Magalha͂es, F. T. Pinho, and P. J. Oliveira, Adaptive multiresolution approach for solution of hyperbolic PDEs, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 3909–3928. · Zbl 1010.65042
[4] R. Archibald, G. Fann, and W. Shelton, Adaptive discontinuous Galerkin methods in multiwavelets bases, Appl. Numer. Math., 61 (2011), pp. 879–890. · Zbl 1216.65126
[5] D. A. Arnold, F. Brezzi, B. Cockburn, and L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779. · Zbl 1008.65080
[6] B. Ayuso, J. A. Carrillo, and C.-W. Shu, Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system, Kinet. Relat. Models, 4 (2011), pp. 955–989. · Zbl 1252.65157
[7] N. Besse, F. Filbet, M. Gutnic, I. Paun, and E. Sonnendrücker, An adaptive numerical method for the Vlasov equation based on a multiresolution analysis, in Numerical Mathematics and Advanced Applications, Springer, New York, 2003, pp. 437–446. · Zbl 1254.82035
[8] N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, and P. Bertrand, A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov–Maxwell system, J. Comput. Phys., 227 (2008), pp. 7889–7916. · Zbl 1194.83013
[9] B. Bihari and A. Harten, Multiresolution schemes for the numerical solution of \(2\)-D conservation laws I, SIAM J. Sci. Comput., 18 (1997), pp. 315–354. · Zbl 0878.35007
[10] O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi-Bellman equations, J. Sci. Comput., 55 (2012), pp. 575–605. · Zbl 1269.65076
[11] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269. · Zbl 1118.65388
[12] J. L. Díaz Calle, P. R. B. Devloo, and S. M. Gomes, Wavelets and adaptive grids for the discontinuous Galerkin method, Numer. Algorithms, 39 (2005), pp. 143–154. · Zbl 1068.65118
[13] Y. Cheng, A. J. Christlieb, and X. Zhong, Energy-conserving discontinuous Galerkin methods for the Vlasov–Ampère system, J. Comput. Phys., 256 (2014), pp. 630–655. · Zbl 1349.78030
[14] Y. Cheng, I. M Gamba, and P. J. Morrison, Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems, J. Sci. Comput., 56 (2013), pp. 319–349. · Zbl 1281.82028
[15] G. Chiavassa, R. Donat, and S. Müller, Multiresolution-Based Adaptive Schemes for Hyperbolic Conservation Laws, in Adaptive Mesh Refinement-Theory and Applications, Springer, New York, 2005, pp. 137–159. · Zbl 1065.65118
[16] A. Cohen, Wavelet Methods in Numerical Analysis, Handb. Numer. Anal., 7 (2000), pp. 417–711. · Zbl 0976.65124
[17] A. Cohen, S. Kaber, S. Müller, and M. Postel, Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comp., 72 (2003), pp. 183–225. · Zbl 1010.65035
[18] N. Crouseilles, M. Lemou, and F. Méhats, Asymptotic preserving schemes for highly oscillatory Vlasov–Poisson equations, J. Comput. Phys., 248 (2013), pp. 287–308. · Zbl 1349.82062
[19] N. Crouseilles, M. Lemou, F. Méhats, and X. Zhao, Uniformly Accurate Forward Semi-Lagrangian Methods for Highly Oscillatory Vlasov-Poisson Equations, INRIA preprint, HAL-01286947, 2016. · Zbl 1365.65215
[20] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer., 6 (1997), pp. 55–228. · Zbl 0884.65106
[21] W. Dahmen, B. Gottschlich–Müller, and S. Müller, Multiresolution schemes for conservation laws, Numer. Math., 88 (2001), pp. 399–443. · Zbl 1001.65104
[22] E. Frénod, S. A. Hirstoaga, and E. Sonnendrücker, An exponential integrator for a highly oscillatory Vlasov equation, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), pp. 169–183.
[23] J. Garcke and M. Griebel, Sparse Grids and Applications, Springer, New York, 2013. · Zbl 1330.65005
[24] N. Gerhard, F. Iacono, G. May, S. Müller, and R. Schäfer, A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows, J. Sci. Comput., 62 (2014), pp. 25–52. · Zbl 1462.65141
[25] N. Gerhard and S. Müller, Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: Multi-dimensional case, Comput. Appl. Math., (2014), pp. 1–29.
[26] M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences, Computing, 61 (1998), pp. 151–179. · Zbl 0918.65078
[27] W. Guo and Y. Cheng, A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations, SIAM J. Sci. Comput. 38 (2016), pp. A3381–A3409.
[28] M. Gutnic, M. Haefele, I. Paun, and E. Sonnendrücker, Vlasov simulations on an adaptive phase-space grid, Comput. Phys. Commun., 164 (2004), pp. 214–219. · Zbl 1196.76098
[29] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Commun. Pure Appl. Math., 48 (1995), pp. 1305–1342. · Zbl 0860.65078
[30] R. E. Heath, I. M. Gamba, P. J. Morrison, and C. Michler, A discontinuous Galerkin method for the Vlasov-Poisson system, J. Comput. Phys., 231 (2012), pp. 1140–1174. · Zbl 1244.82081
[31] N. Hovhannisyan, S. Müller, and R. Schäfer, Adaptive multiresolution discontinuous Galerkin schemes for conservation laws, Math. Comp., 83 (2014), pp. 113–151. · Zbl 1282.65118
[32] F. Iacono, G. May, S. Müller, and R. Schäfer, An adaptive multiwavelet-based DG discretization for compressible fluid flow, in Computational Fluid Dynamics 2010: Proceedings of the Sixth International Conference on Computational Fluid Dynamics, St. Petersburg, Russia, 2010, A. Kuzmin, ed., Springer, Berlin, 2011, pp. 813–820. · Zbl 1346.76133
[33] K. Kormann and E. Sonnendrücker, Sparse Grids for the Vlasov–Poisson Equation, Springer International Publishing, Cham, 2016, pp. 163–190. · Zbl 1381.82020
[34] D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems, Ph.D. thesis, TU Munchen, 2010.
[35] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471. · Zbl 0653.65072
[36] Z. Wang, Q. Tang, W. Guo, and Y. Cheng, Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations, J. Comput. Phys., 314 (2016), pp. 244–263. · Zbl 1349.65636
[37] C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM Seminar, Vol. 31, 1990.
[38] H. Zhu and J.-M. Qiu, An \(h\)-adaptive RKDG method for the Vlasov-Poisson system, J. Sci. Comput., 69 (2016), pp. 1346–1365. · Zbl 1397.65197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.