×

zbMATH — the first resource for mathematics

A flag Whitney number formula for matroid Kazhdan-Lusztig polynomials. (English) Zbl 1380.05023
Summary: For a representation of a matroid the combinatorially defined Kazhdan-Lusztig polynomial computes the intersection cohomology of the associated reciprocal plane. However, these polynomials are difficult to compute and there are numerous open conjectures about their structure. For example, it is unknown whether or not the coefficients are non-negative for non-representable matroids. The main result in this note is a combinatorial formula for the coefficients of these matroid Kazhdan-Lusztig polynomials in terms of flag Whitney numbers. This formula gives insight into some vanishing behavior of the matroid Kazhdan-Lusztig polynomials.

MSC:
05B35 Combinatorial aspects of matroids and geometric lattices
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
06A07 Combinatorics of partially ordered sets
11B75 Other combinatorial number theory
Software:
SageMath
PDF BibTeX XML Cite
Full Text: Link
References:
[1] [1] Karim Adiprasito, June Huh, and Eric Katz. Hodge theory for combinatorial geometries. preprint,arXiv:1511.02888. · Zbl 1359.05017
[2] [2] Martin Aigner. Whitney numbers. In Combinatorial geometries, volume 29 of Encyclopedia Math. Appl., pages 139-160. Cambridge Univ. Press, Cambridge, 1987. · Zbl 0631.05015
[3] [3] Francesco Brenti. P -kernels, IC bases and Kazhdan-Lusztig polynomials. J. Algebra, 259(2):613-627, 2003. · Zbl 1022.20015
[4] [4] The Sage Developers. Sage Mathematics Software (Version 6.6), 2016.http://www. sagemath.org.
[5] [5] Thomas A. Dowling and Richard M. Wilson. Whitney number inequalities for geometric lattices. Proc. Amer. Math. Soc., 47:504-512, 1975. · Zbl 0297.05010
[6] [6] Katie Gedeon, Nicholas Proudfoot, and Ben Young.The equivariant KazhdanLusztig polynomial of a matroid. preprint. the electronic journal of combinatorics 25(1) (2018), #P1.2213
[7] [7] Curtis Greene and Thomas Zaslavsky. On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs. Trans. Amer. Math. Soc., 280(1):97-126, 1983. · Zbl 0539.05024
[8] [8] P. Hall. A Contribution to the Theory of Groups of Prime-Power Order. Proc. London Math. Soc., S2-36(1):29.
[9] [9] June Huh and Botong Wang. Enumeration of points, lines, planes, etc. preprint, arXiv:1609.05484v3. · Zbl 1386.05021
[10] [10] Kalle Karu. The cd-index of fans and posets. Compos. Math., 142(3):701-718, 2006. · Zbl 1103.14029
[11] [11] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165-184, 1979. · Zbl 0499.20035
[12] [12] Joseph P. S. Kung. Radon transforms in combinatorics and lattice theory. In Combinatorics and ordered sets (Arcata, Calif., 1985), volume 57 of Contemp. Math., pages 33-74. Amer. Math. Soc., Providence, RI, 1986.
[13] [13] Nicholas Proudfoot, Max Wakefield, and Ben Young. Intersection cohomology of the symmetric reciprocal plane. J. Algebraic Combin., 43(1):129-138, 2016. · Zbl 1331.05233
[14] [14] Nicholas Proudfoot, Max Wakefield, and Ben Young. Intersection cohomology of the symmetric reciprocal plane. J. Algebraic Combin., 43(1):129-138, 2016. · Zbl 1331.05233
[15] [15] Nicholas Proudfoot, Yuan Xu, and Ben Young. The Z-polynomial of a matroid. preprint. · Zbl 1380.05022
[16] [16] Gian-Carlo Rota. On the foundations of combinatorial theory. I. Theory of M¨obius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:340-368 (1964), 1964. · Zbl 0121.02406
[17] [17] P. D. Seymour. On the points-lines-planes conjecture. J. Combin. Theory Ser. B, 33(1):17-26, 1982. · Zbl 0505.05024
[18] [18] R. P. Stanley. Supersolvable lattices. Algebra Universalis, 2:197-217, 1972. · Zbl 0256.06002
[19] [19] Richard P. Stanley. Ordered structures and partitions. American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 119. · Zbl 0246.05007
[20] [20] Richard P. Stanley. Finite lattices and Jordan-H¨older sets. Algebra Universalis, 4:361-371, 1974. · Zbl 0303.06006
[21] [21] Richard P. Stanley. Balanced Cohen-Macaulay complexes. Trans. Amer. Math. Soc., 249(1):139-157, 1979. · Zbl 0411.05012
[22] [22] Richard P. Stanley. Subdivisions and local h-vectors. J. Amer. Math. Soc., 5(4):805- 851, 1992. · Zbl 0768.05100
[23] [23] Richard P. Stanley. Flag f -vectors and the cd-index. Math. Z., 216(3):483-499, 1994. · Zbl 0805.06003
[24] [24] D. J. A. Welsh. Matroid theory. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8. · Zbl 0343.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.