×

Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. (English) Zbl 1380.34097

Summary: The problem of real combination synchronization between three complex-variable chaotic systems with unknown parameters is investigated by nonsingular terminal sliding mode control in a finite time. Based on the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is designed to ensure the real combination synchronization of three complex-variable chaotic systems in a given finite time. It is theoretically gained that the introduced sliding mode technique has finite-time convergence and stability in both arriving and sliding mode phases. Numerical simulation results are given to show the effectiveness and reliability of the finite-time real combination synchronization.

MSC:

34H10 Chaos control for problems involving ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[2] Zhang, Q., Lu, J., Lü, J., Tse, C.: Adaptive feedback synchronization of a general complex dynamical network with delayed nodes. IEEE Trans. Circuits Syst. II: Express. Briefs 55(2), 183-187 (2008)
[3] Liu, Y., Sun, L., Lu, J., Liang, J.: Feedback Controller Design for the Synchronization of Boolean Control Networks. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2461012 · doi:10.1109/TNNLS.2015.2461012
[4] Vincent, U.E.: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos, Solitons Fractals 37(4), 1065-1075 (2008) · Zbl 1153.37359 · doi:10.1016/j.chaos.2006.10.005
[5] Yu, Y., Li, H.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Ana. RWA 12(1), 388-393 (2011) · Zbl 1214.34042 · doi:10.1016/j.nonrwa.2010.06.024
[6] Dedieu, H., Ogorzalek, M.J.: Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 948-962 (1997) · doi:10.1109/81.633884
[7] Wu, E., Yang, X.: Adaptive synchronization of coupled nonidentical chaotic systems with complex variables and stochastic perturbations. Nonlinear Dyn. 84(1), 261-267 (2016) · Zbl 1354.93182 · doi:10.1007/s11071-015-2433-2
[8] Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20(1), 64-73 (2014) · doi:10.1002/cplx.21497
[9] Ma, J., Li, F., Huang, L., Jin, W.: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3770-3783 (2014) · Zbl 1222.65136 · doi:10.1016/j.cnsns.2010.12.030
[10] Yang, T., Chua, L.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 976-988 (1997) · doi:10.1109/81.633887
[11] Zhang, H., Ma, T., Huang, G., Wang, Z.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man. Cybern. B 40(3), 831-844 (2010) · doi:10.1109/TSMCB.2009.2030506
[12] Sun, D.: Position synchronization of multiple motion axes with adaptive couplingcontrol. Automatica 39(6), 997-1005 (2003) · Zbl 1137.93366 · doi:10.1016/S0005-1098(03)00037-2
[13] Grosu, I., Banerjee, R., Roy, P.K., Dana, S.K.: Design of coupling for synchronization of chaotic oscillators. Phys. Rev. E 80(3), 016212 (2009) · doi:10.1103/PhysRevE.80.016212
[14] Ghosh, D., Grosu, I., Dana, S.K.: Design of coupling for synchronization in time-delayed systems. Chaos 22(3), 033111 (2012) · Zbl 1319.93026 · doi:10.1063/1.4731797
[15] Feki, M.: Sliding mode control and synchronization of chaotic systems with parametric uncertainties. Chaos Solitons Fractals 41(3), 1390-1400 (2009) · Zbl 1198.93056 · doi:10.1016/j.chaos.2008.05.022
[16] Konishi, K., Hirai, M., Kokame, H.: Sliding mode control for a class of chaotic systems. Phys. Lett. A 245(6), 511-517 (1998) · doi:10.1016/S0375-9601(98)00439-3
[17] Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model 35(6), 3080-3091 (2011) · Zbl 1219.93023 · doi:10.1016/j.apm.2010.12.020
[18] Peng, Y.F.: Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems. Chaos Solitons Fractals 39(1), 150-167 (2009) · Zbl 1197.93121 · doi:10.1016/j.chaos.2007.01.152
[19] Jang, M.J., Chen, C.L., Chen, C.K.: Sliding mode control of hyperchaos in Rössler systems. Chaos Solitons Fractals 14(9), 1465-1476 (2002) · Zbl 1037.93507 · doi:10.1016/S0960-0779(02)00084-X
[20] Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[21] Yu, X.H., Man, Z.H.: Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans. Theory Appl. Circuits Syst. I Fundam. 49(2), 261-264 (2002) · Zbl 1368.93213 · doi:10.1109/81.983876
[22] Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728-2733 (2009) · Zbl 1221.37225 · doi:10.1016/j.cnsns.2008.08.013
[23] Yang, X., Cao, J.: Finite-time stochastic synchronization of complex networks. Appl. Math. Model 34(11), 3631-3641 (2010) · Zbl 1201.37118 · doi:10.1016/j.apm.2010.03.012
[24] Yang, X., Lu, J.: Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Autom. Control 61(8), 2256-2261 (2016) · Zbl 1359.93459 · doi:10.1109/TAC.2015.2484328
[25] Xia, Z., Wang, X., Zhang, L., Zhan, Q., Sun, X., Ren, K.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Sec. 11(11), 2594-2608 (2016) · doi:10.1109/TIFS.2016.2590944
[26] Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340-352 (2016) · doi:10.1109/TPDS.2015.2401003
[27] Luo, C., Wang, X.: Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification. J. Frankl. Inst. 350(9), 2646-2663 (2011) · Zbl 1287.93042 · doi:10.1016/j.jfranklin.2013.06.011
[28] Wang, X., Zhao, H., Lin, X.: Module-phase synchronization in hyperchaotic complex Lorenz system after modified complex projection. Appl. Math. Comput. 232, 91-96 (2014) · Zbl 1293.62151 · doi:10.1016/j.cam.2013.09.037
[29] Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn. 71(1-2), 241-257 (2013) · Zbl 1268.34022 · doi:10.1007/s11071-012-0656-z
[30] Sun, J., Shen, Y., Zhang, X.: Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems. Nonlinear Dyn. 78(3), 1755-1764 (2014) · doi:10.1007/s11071-014-1558-z
[31] Sun, J., Shen, Y., Zhang, G., Xu, C., Cui, G.: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211-1222 (2013) · Zbl 1281.34075 · doi:10.1007/s11071-012-0620-y
[32] Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 76(1), 383-397 (2014) · Zbl 1319.37027 · doi:10.1007/s11071-013-1133-z
[33] Sun, J., Wang, Y., Wang, Y., Shen, Y.: Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn. 85(2), 1105-1117 (2016) · Zbl 1355.34097 · doi:10.1007/s11071-016-2747-8
[34] Sun, J., Cui, G., Wang, Y., Shen, Y.: Combination complex synchronization of three chaotic complex systems. Nonlinear Dyn. 79(2), 953-965 (2015) · Zbl 1345.34101 · doi:10.1007/s11071-014-1714-5
[35] Sun, J., Shen, Y., Cui, G.: Compound synchronization of four chaotic complex systems. Adv. Math. Phys. (2015). doi:10.1155/2015/921515 · Zbl 1336.93092
[36] Yang, X., Ho, D.W.C.: Synchronization of delayed memristive neural networks: robust analysis approach. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2505903
[37] Yang, X.: Can neural networks with arbitrary delays be finite-timely synchronized? Neurocomputing 143(3), 275-281 (2014) · doi:10.1016/j.neucom.2014.05.064
[38] Yang, X., Song, Q., Liang, J., He, B.: Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J. Frankl. Inst. 352(10), 4382-4406 (2015) · Zbl 1395.93354 · doi:10.1016/j.jfranklin.2015.07.001
[39] Yang, X., Ho, D.W.C., Lu, J., Song, Q.: Finite-time cluster synchronization of TCS fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans. Fuzzy Syst. 23(6), 2302-2316 (2015) · doi:10.1109/TFUZZ.2015.2417973
[40] Shi, L., Yang, X., Li, Y., Feng, Z.: Finite-time synchronization of nonidentical chaotic systems with multiple time-varying delays and bounded perturbations. Nonlinear Dyn. 83(1-2), 75-87 (2016) · Zbl 1349.34210 · doi:10.1007/s11071-015-2310-z
[41] Li, Y., Yang, X., Shi, L.: Finite-time synchronization for competitive neural networks with mixed delays and non-identical perturbations. Neurocomputing 185, 242-253 (2016) · doi:10.1016/j.neucom.2015.11.094
[42] Hua, H., Liu, Y., Lu, J., Zhu, J.: A new impulsive synchronization criterion for T-S fuzzy model and its applications. Appl. Math. Model. 37(20), 8826-8835 (2013) · Zbl 1438.93141 · doi:10.1016/j.apm.2013.04.011
[43] Zhang, W., Liu, Y.: Observer-based distributed consensus for general nonlinear multi-agent systems with interval control inputs. Int. J. Control 89(1), 84-98 (2016) · Zbl 1332.93039 · doi:10.1080/00207179.2015.1060361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.