×

zbMATH — the first resource for mathematics

Nektar++: an open-source spectral/\(hp\) element framework. (English) Zbl 1380.65465
Summary: Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/\(h p\) element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/\(h p\) element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.

MSC:
65Y15 Packaged methods for numerical algorithms
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Patera, A. T., J. Comput. Phys., 54, 3, 468-488, (1984)
[2] Babuska, I.; Szabo, B. A.; Katz, I. N., SIAM J. Numer. Anal., 18, 3, 515-545, (1981)
[3] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods for CFD, (2005), Oxford University Press · Zbl 0857.76044
[4] Blackburn, H. M.; Sherwin, S., J. Comput. Phys., 197, 2, 759-778, (2004)
[5] P. Fischer, J. Kruse, J. Mullen, H. Tufo, J. Lottes, S. Kerkemeier, Nek5000-open source spectral element CFD solver, Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, see https://nek5000.mcs.anl.gov/index.php/MainPage.
[6] Vejchodskỳ, T.; Šolín, P.; Zítka, M., Math. Comput. Simul., 76, 1, 223-228, (2007)
[7] Dedner, A.; Klöfkorn, R.; Nolte, M.; Ohlberger, M., Computing, 90, 3-4, 165-196, (2010)
[8] Bangerth, W.; Hartmann, R.; Kanschat, G., ACM Trans. Math. Softw., 33, 4, 24, (2007)
[9] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, vol. 54, (2007), Springer
[10] Witherden, F.; Farrington, A.; Vincent, P., Comput. Phys. Comm., 185, 3028-3040, (2014)
[11] Dubiner, M., J. Sci. Comput., 6, 4, 345-390, (1991)
[12] Sherwin, S. J.; Karniadakis, G. E., Comput. Methods Appl. Mech. Engrg., 123, 1-4, 189-229, (1995)
[13] Duffy, M. G., SIAM J. Numer. Anal., 19, 6, 1260-1262, (1982)
[14] Tufo, H. M.; Fischer, P. F., J. Parallel Distrib. Comput., 61, 2, 151-177, (2001) · Zbl 0972.68191
[15] Sherwin, S. J.; Casarin, M., J. Comput. Phys., 171, 1, 394-417, (2001)
[16] Vos, P. E.; Sherwin, S. J.; Kirby, R. M., J. Comput. Phys., 229, 13, 5161-5181, (2010)
[17] Cantwell, C. D.; Sherwin, S. J.; Kirby, R. M.; Kelly, P. H.J., Comput. & Fluids, 43, 23-28, (2011)
[18] Cantwell, C. D.; Sherwin, S. J.; Kirby, R. M.; Kelly, P. H.J., Math. Mod. Nat. Phenom., 6, 84-96, (2011)
[19] Fischer, P.; Lottes, J.; Pointer, D.; Siegel, A., Petascale algorithms for reactor hydrodynamics, Journal of Physics: Conference Series, vol. 125, 012076, (2008), IOP Publishing
[20] Vos, P. E.; Eskilsson, C.; Bolis, A.; Chun, S.; Kirby, R. M.; Sherwin, S. J., Int. J. Comput. Fluid Dyn., 25, 3, 107-125, (2011)
[21] Barkley, D.; Blackburn, H.; Sherwin, S. J., Internat. J. Numer. Methods Fluids, 57, 9, 1435-1458, (2008)
[22] Dong, S.; Karniadakis, G. E.; Chryssostomidis, C., J. Comput. Phys., 261, 83-105, (2014)
[23] Kirby, R. M.; Sherwin, S. J., Comput. Methods Appl. Mech. Eng., 195, 23, 3128-3144, (2006) · Zbl 1115.76060
[24] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., J. Comput. Phys., 97, 2, 414-443, (1991)
[25] Orszag, S. A.; Israeli, M.; Deville, M. O., J. Sci. Comput., 1, 1, 75-111, (1986)
[26] Ferrer, E.; Moxey, D.; Sherwin, S. J.; Willden, R. H.J., Commun. Comput. Phys., 16, 3, 817-840, (2014)
[27] de Grazia, D.; Mengaldo, G.; Moxey, D.; Vincent, P. E.; Sherwin, S. J., International journal for numerical methods in fluids, 75, 12, 860-877, (2014)
[28] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, (2009), Springer Berlin, New York · Zbl 1227.76006
[29] Mengaldo, G.; De Grazia, D.; Peiro, J.; Farrington, A.; Witherden, F.; Vincent, P. E.; Sherwin, S. J., (7th AIAA Theoretical Fluid Mechanics Conference, AIAA Aviation, (2014), American Institute of Aeronautics and Astronautics)
[30] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, AIAA 112. · Zbl 1167.65436
[31] Breuer, M.; Peller, N.; Rapp, C.; Manhart, M., Comput. & Fluids, 38, 2, 433-457, (2009)
[32] ERCOFTAC QNET-CFD Database for test case UFR 3-30, 2D Periodic Hill Flow: database of numerical and experimental results 2014. URL http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-30_References.
[33] Arnoldi, W. E., Quart. Appl. Math., 9, 1, 17-29, (1951)
[34] Peregrine, D. H., J. Fluid Mech., 27, 815-827, (1967)
[35] Madsen, P.; Schäffer, H., Philos. Trans. R. Soc. Lond. Ser. A, 356, 3123-3184, (1998)
[36] M. Brocchini, Philos. Trans. R. Soc. Lond. Ser. A 469.
[37] Eskilsson, C.; Sherwin, S., J. Comput. Phys., 212, 566-589, (2006)
[38] Cantwell, C. D.; Yakovlev, S.; Kirby, R. M.; Peters, N. S.; Sherwin, S. J., J. Comput. Phys., 257, 813-829, (2014)
[39] Courtemanche, M.; Ramirez, R. J.; Nattel, S., Amer. J. Physiol. Heart Circul. Physiol., 44, 1, H301, (1998)
[40] Sherwin, S.; Formaggia, L.; Peiro, J.; Franke, V., Internat. J. Numer. Methods Fluids, 43, 6-7, 673-700, (2003)
[41] Alastruey, J.; Parker, K.; Peiró, J.; Sherwin, S., Commun. Comput. Phys., 4, 2, 317-336, (2008)
[42] Moxey, D.; Green, M. D.; Sherwin, S. J.; Peiró, J., Comput. Methods Appl. Mech. Engrg., 283, 636-650, (2015)
[43] Moxey, D.; Hazan, M.; Sherwin, S. J.; Peiró, J., On the generation of curvilinear meshes through subdivision of isoparametric elements, (New Challenges in Grid Generation and Adaptivity for Scientific Computing, SEMA SIMAI Springer Series, Vol. 5, (2015)) · Zbl 1327.65257
[44] Geuzaine, C.; Remacle, J.-F., Int. J. Numer. Methods Eng., 79, 11, 1309-1331, (2009)
[45] L. Torvalds, J. Hamano, GIT: Fast version control system 2014. URL http://git-scm.com.
[46] Trac integrated SCM & project management 2014. URL http://trac.edgewall.org.
[47] CMake 2014. URL http://cmake.org.
[48] Boost C++ libraries 2014. URL http://www.boost.org.
[49] Buildbot 2014. URL http://www.buildbot.net.
[50] Cohen, J.; Moxey, D.; Cantwell, C.; Burovskiy, P.; Darlington, J.; Sherwin, S. J., (Cluster Computing (CLUSTER), 2013 IEEE International Conference on, (2013), IEEE), 1-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.