×

On stability of fuzzy formal concepts over randomized one-sided formal context. (English) Zbl 1380.68347

Summary: We propose a probabilistic approach to the issue of one-sided fuzzy formal concepts stability. The modified Rice-Siff algorithm represents a crisp index how to select the relevant concepts from the set of all one-sided fuzzy formal concepts. We suggest to explore the formal concepts stability affected by the random fluctuation of values in a formal context. We describe the algorithm and study the properties of the concept stability using random variables with the Gaussian normal distribution. In combination with the modified Rice-Siff algorithm, the Gaussian probabilistic index improves the analysis of the most relevant one-sided formal concepts from the original one-sided formal context. The connections to recent works in the related directions are presented.

MSC:

68T30 Knowledge representation
68Q87 Probability in computer science (algorithm analysis, random structures, phase transitions, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alcalde, C.; Burusco, A.; Bustince, H.; Jurio, A.; Sanz, J. A., Evolution in time of L-fuzzy context sequences, Inf. Sci., 326, 202-214, (2016) · Zbl 1390.68617
[2] Antoni, L.; Krajči, S.; Krídlo, O.; Macek, B.; Pisková, L., On heterogeneous formal contexts, Fuzzy Sets Syst., 234, 22-33, (2014) · Zbl 1315.68232
[3] Babin, M. A.; Kuznetsov, S. O., Approximating concept stability, (Domenach, F.; Ignatov, D.; Poelmans, J., ICFCA 2012, Lect. Notes Comput. Sci., vol. 7278, (2012), Springer Heidelberg), 7-15 · Zbl 1360.68798
[4] Bartl, E., Minimal solutions of generalized fuzzy relational equations: probabilistic algorithm based on greedy approach, Fuzzy Sets Syst., 260, 25-42, (2015) · Zbl 1335.03047
[5] Bělohlávek, R., Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128, 277-298, (2004) · Zbl 1060.03040
[6] Bělohlávek, R., Ordinally equivalent data: a measurement-theoretic look at formal concept analysis of fuzzy attributes, Int. J. Approx. Reason., 54, 9, 1496-1506, (2013) · Zbl 1316.68156
[7] Bělohlávek, R.; De Baets, B.; Konečný, J., Granularity of attributes in formal concept analysis, Inf. Sci., 260, 149-170, (2014) · Zbl 1328.68216
[8] Bělohlávek, R.; Sklenář, V.; Zacpal, J., Crisply generated fuzzy concepts, (Ganter, B.; Godin, R., 3rd International Conference on Formal Concept Analysis, Lect. Notes Artif. Intell., vol. 3403, (2005), Springer Heidelberg), 269-284 · Zbl 1078.68142
[9] Bělohlávek, R.; Trnečka, M., Basic level of concepts in formal concept analysis, (Domenach, F.; Ignatov, D.; Poelmans, J., 10th International Conference on Formal Concept Analysis, Lect. Notes Artif. Intell., vol. 7278, (2012), Springer Heidelberg), 28-44 · Zbl 1360.68800
[10] Bělohlávek, R.; Trnečka, M., Basic level in formal concept analysis: interesting concepts and psychological ramifications, (Rossi, F., Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, (2013)), 1233-1239
[11] Bělohlávek, R.; Trnečka, M., From-below approximations in Boolean matrix factorization: geometry and new algorithm, J. Comput. Syst. Sci., 81, 8, 1678-1697, (2015) · Zbl 1328.68295
[12] Ben Yahia, S.; Jaoua, A., Discovering knowledge from fuzzy concept lattice, (Kandel, A.; Last, M.; Bunke, H., Data Mining and Computational Intelligence, (2001), Physica-Verlag), 169-190
[13] Burusco, A.; Fuentes-González, R., The study of L-fuzzy concept lattice, Mathw. Soft Comput., 3, 209-218, (1994) · Zbl 0827.06004
[14] Butka, P.; Pócs, J., Generalization of one-sided concept lattices, Comput. Inform., 32, 2, 355-370, (2013) · Zbl 1413.06008
[15] Butka, P.; Pócs, J.; Pócsová, J., Distributed computation of generalized one-sided concept lattices on sparse data tables, Comput. Inform., 34, 1, 77-98, (2015) · Zbl 1413.68132
[16] Butka, P.; Pócs, J.; Pócsová, J., Reduction of concepts from generalized one-sided concept lattice based on subsets quality measure, (New Research in Multimedia and Internet Systems, Adv. Intell. Syst. Comput., vol. 314, (2015)), 101-111
[17] Buzmakov, A.; Kuznetsov, S. O.; Napoli, A., Scalable estimates of concept stability, (Glodeanu, C. V.; Kaytoue, M.; Sacarea, Ch., ICFCA 2014, Lect. Notes Comput. Sci., vol. 8478, (2014), Springer Heidelberg), 157-172 · Zbl 1444.68198
[18] Cabrera, I. P.; Cordero, P.; Gutiérez, G.; Martinez, J.; Ojeda-Aciego, M., On residuation in multilattices: filters, congruences, and homomorphisms, Fuzzy Sets Syst., 234, 1-21, (2014) · Zbl 1315.06008
[19] Cellier, P.; Ferré, S.; Ridoux, O.; Ducassé, M., A parameterized algorithm to explore formal contexts with a taxonomy, Int. J. Found. Comput. Sci., 2, 319-343, (2008) · Zbl 1156.68521
[20] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., Attribute and size reduction mechanisms in multi-adjoint concept lattices, J. Comput. Appl. Math., 318, 388-402, (2017) · Zbl 1382.68236
[21] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., Attribute reduction mechanisms in multi-adjoint concept lattices, Inf. Sci., 294, 41-56, (2015) · Zbl 1360.68805
[22] Chung, K. L.; AitSahlia, F., Elementary probability theory, (2006), Springer
[23] Dekking, F. M.; Kraaikamp, C.; Lopuhaä, H. P.; Meester, L. E., A modern introduction to probability and statistics, (2005), Springer · Zbl 1079.60002
[24] Dias, S. M.; Vieira, N. J., Reducing the size of concept lattices: the JBOS approach, (Kryszkiewicz, M.; Obiedkov, S., Proceedings of the 7th International Conference on Concept Lattices and Their Applications, (2010)), 80-91
[25] Diday, E.; Emilion, R., Maximal and stochastic Galois lattices, Discrete Appl. Math., 27, 2, 271-284, (2003) · Zbl 1026.06009
[26] Dubois, D.; Prade, H., Possibility theory and formal concept analysis: characterizing independent sub-contexts, Fuzzy Sets Syst., 196, 4-16, (2012) · Zbl 1251.68231
[27] Emillion, R., Concepts of a discrete random variable, (Brito, P.; Bertrand, P.; Cucumel, G.; De Carvalho, F., Selected Contributions in Data Analysis and Classifications, (2007), Springer), 247-259
[28] Emillion, R.; Lévy, G., Size of random Galois lattices and number of closed frequent itemsets, Discrete Appl. Math., 157, 2945-2957, (2009) · Zbl 1187.68389
[29] Frič, R.; Papčo, M., A categorical approach to probability theory, Stud. Log., 94, 2, 215-230, (2010) · Zbl 1213.60021
[30] Genz, A., Numerical computations of rectangular bivariate and trivariate normal and t probabilities, Stat. Comput., 14, 3, 251-260, (2004)
[31] Ganter, B.; Wille, R., Formal concept analysis mathematical foundation, (1999), Springer Verlag
[32] Garciá-Pardo, F.; Cabrera, I. P.; Cordero, P.; Ojeda-Aciego, M.; Rodríguez-Sanchez, F. J., On the definition of suitable orderings to generate adjunctions over an unstructured codomain, Inf. Sci., 286, 173-187, (2014) · Zbl 1355.06011
[33] Halaš, R.; Mesiar, R.; Pócs, J., Description of sup- and inf-preserving aggregation functions via families of clusters in data tables, Inf. Sci., 400-401, 173-183, (2017)
[34] Halaš, R.; Pócs, J., Generalized one-sided concept lattices with attribute preferences, Inf. Sci., 303, 50-60, (2015) · Zbl 1360.68808
[35] Kardoš, F.; Pócs, J.; Pócsova, J., On concept reduction based on some graph properties, Knowl.-Based Syst., 93, 67-74, (2016)
[36] Konečný, J.; Krupka, M., Block relations in formal fuzzy concept analysis, Int. J. Approx. Reason., 73, 27-55, (2016) · Zbl 1352.68232
[37] Konečný, J.; Medina, J.; Ojeda-Aciego, M., Multi-adjoint concept lattices with heterogeneous conjunctors and hedges, Ann. Math. Artif. Intell., 72, 1-2, 73-89, (2014) · Zbl 1322.06004
[38] Konečný, J.; Ojeda-Aciego, M., On homogeneous L-bonds and heterogeneous L-bonds, Int. J. Gen. Syst., 45, 2, 160-186, (2016) · Zbl 1365.68415
[39] Klimushkin, M.; Obiedkov, S.; Roth, C., Approaches to the selection of relevant concepts in the case of noisy data, (Kwuida, L.; Sertkaya, B., 8th International Conference on Formal Concept Analysis, Lect. Notes Comput. Sci., vol. 5986, (2010), Springer Heidelberg), 255-266 · Zbl 1274.68489
[40] Krajči, S., Social network and formal concept analysis, social networks: A framework of computational intelligence, 41-62, (2014), Springer
[41] Krajči, S., Cluster based efficient generation of fuzzy concepts, Neural Netw. World, 13, 5, 521-530, (2003)
[42] Krajči, S.; Krajčiová, J., Social network and one-sided fuzzy concept lattices, (IEEE International Conference on Fuzzy Systems, London, (2007)), 222-227
[43] Krídlo, O.; Krajči, S.; Ojeda-Aciego, M., The category of L-Chu correspondences and the structure of L-bonds, Fundam. Inform., 115, 4, 297-325, (2012) · Zbl 1256.06012
[44] Krídlo, O.; Ojeda-Aciego, M., Revising the link between L-Chu correspondences and completely lattice L-ordered sets, Ann. Math. Artif. Intell., 72, 1-2, 91-113, (2014) · Zbl 1322.06003
[45] Kuznetsov, S. O., Stability as an estimate of the degree of substantiation of hypotheses on the basis of operational similarity, Nauchno-Tekhn. Inform. Ser. 2, 24, 62-75, (1990) · Zbl 0737.68069
[46] Kuznetsov, S. O., Complexity of learning in concept lattices from positive and negative examples, Discrete Appl. Math., 142, 111-125, (2004) · Zbl 1077.68039
[47] Kuznetsov, S. O., On stability of a formal concept, Ann. Math. Artif. Intell., 49, 101-115, (2007) · Zbl 1129.68086
[48] Kwuida, L.; Missaoui, R.; Ben Amor, B.; Boumedjout, L.; Vaillancourt, J., Restrictions on concept lattices for pattern management, (Kryszkiewicz, M.; Obiedkov, S., Proceedings of the 7th International Conference on Concept Lattices and Their Applications, (2010)), 235-246
[49] Medina, J.; Ojeda-Aciego, M., On multi-adjoint concept lattices based on heterogeneous conjunctors, Fuzzy Sets Syst., 208, 95-110, (2012) · Zbl 1252.06003
[50] Medina, J.; Ojeda-Aciego, M., Dual multi-adjoint concept lattices, Inf. Sci., 225, 47-54, (2013) · Zbl 1293.06001
[51] Medina, J.; Ojeda-Aciego, M.; Pócs, J.; Ramiréz-Poussa, E., On the Dedekind-macneille completion and formal concept analysis based on multilattices, Fuzzy Sets Syst., 303, 1-20, (2016) · Zbl 1386.06003
[52] Medina, J.; Ojeda-Aciego, M.; Vojtáš, P., Similarity-based unification: a multi-adjoint approach, Fuzzy Sets Syst., 146, 43-62, (2004) · Zbl 1073.68026
[53] Motwani, R.; Raghavan, P., Randomized algorithms, (1995), Cambridge University Press · Zbl 0849.68039
[54] Outrata, J., A lattice-free concept lattice update algorithm, Int. J. Gen. Syst., 45, 2, 211-231, (2016) · Zbl 1365.68417
[55] Poelmans, J.; Kuznetsov, S. O.; Ignatov, D. I.; Dedene, G., Formal concept analysis in knowledge processing: a survey on models and techniques, Expert Syst. Appl., 40, 6601-6623, (2013)
[56] Ross, S. M., Introduction to probability models, (2010), Elsevier · Zbl 1184.60002
[57] Singh, P. K.; Kumar, Ch. A., Bipolar fuzzy graph representation of concept lattice, Inf. Sci., 288, 437-448, (2014) · Zbl 1355.68249
[58] Skřivánek, V.; Frič, R., Generalized random events, Int. J. Theor. Phys., 54, 4386-4396, (2015) · Zbl 1329.81102
[59] Smatana, M.; Butka, P., Hierarchical topic modeling based on the combination of formal concept analysis and singular value decomposition, (Zgrzywa, A.; Choros, K.; Sieminski, A., Multimedia and Network Information Systems, (2017), Springer International Publishing), 357-368
[60] Smatana, M.; Butka, P., Dynamic visualization of generalized one-sided concept lattices and their reductions, (Borzemski, L.; Grzech, A.; Swiatek, J.; Wilimowska, Z., ISAT 2016 - Part I, Adv. Intell. Syst. Comput., vol. 521, (2017), Springer Cham), 55-66
[61] Snášel, V.; Ďuráková, D.; Krajči, S.; Vojtáš, P., Merging concept lattices of α-cuts of fuzzy contexts, Contrib. Gen. Algebra, 14, 155-166, (2004) · Zbl 1042.06005
[62] Valverde-Albacete, F. J.; Peláez-Moreno, C.; Peñas, A., On concept lattices as information channels, (Bertet, K.; Rudolph, S., Proceedings of the 11th International Conference on Concept Lattices and Their Applications, (2014)), 119-131
[63] Wille, R., Restructuring lattice theory: an approach based on hierarchy of concepts, (Rival, I., Ordered Sets, Dordrecht-Boston, (1982)), 445-470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.