×

zbMATH — the first resource for mathematics

A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. (English) Zbl 1380.76040
Summary: We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at \(Re_\tau = 180\) as well as 590.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hindenlang, F.; Gassner, G.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93, (2012) · Zbl 1365.76117
[2] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Massa, F., On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows, Eur. J. Mech. B, Fluids, 55, Part 2, 367-379, (2016) · Zbl 1408.76360
[3] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C.-D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int. J. Numer. Methods Fluids, 76, 8, 522-548, (2014)
[4] Carton de Wiart, C.; Hillewaert, K.; Bricteux, L.; Winckelmans, G., Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method, Int. J. Numer. Methods Fluids, 78, 6, 335-354, (2015)
[5] Landmann, B.; Kessler, M.; Wagner, S.; Krämer, E., A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows, Comput. Fluids, 37, 4, 427-438, (2008) · Zbl 1237.76071
[6] Wang, L.; Kyle Anderson, W.; Erwin, T.; Kapadia, S., High-order discontinuous Galerkin method for computation of turbulent flows, AIAA J., 53, 5, 1159-1171, (2015)
[7] Bassi, F.; Ghidoni, A.; Perbellini, A.; Rebay, S.; Crivellini, A.; Franchina, N.; Savini, M., A high-order discontinuous Galerkin solver for the incompressible RANS and \(k - \omega\) turbulence model equations, Comput. Fluids, 98, 54-68, (2014) · Zbl 1391.76301
[8] C. Carton de Wiart, K. Hillewaert, E. Lorriaux, G. Verheylewegen, Development of a discontinuous Galerkin solver for high quality wall-resolved/modelled DNS and LES of practical turbomachinery flows on fully unstructured meshes, ASME GT2015-43428, Montreal, Canada.
[9] Hartmann, R.; McMorris, H.; Leicht, T., Curved grid generation and DG computation for the DLR-F11 high lift configuration, (Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V., Proceedings of the ECCOMAS Congress 2016, Crete Island, Greece, 5-10 June 2016, (2016))
[10] Giraldo, F. X.; Hesthaven, J. S.; Warburton, T., Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J. Comput. Phys., 181, 2, 499-525, (2002) · Zbl 1178.76268
[11] Giraldo, F. X.; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases, J. Comput. Phys., 227, 8, 3849-3877, (2008) · Zbl 1194.76189
[12] Carton de Wiart, C.; Hillewaert, K.; Duponcheel, M.; Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number, Int. J. Numer. Methods Fluids, 74, 7, 469-493, (2014)
[13] Collis, S. S., Discontinuous Galerkin methods for turbulence simulation, (Proceedings of the 2002 CTR Summer Program, (2002)), 115-167
[14] Kompenhans, M.; Ferrer, E.; Rubio, G.; Valero, E., Comparisons of compressible and incompressible solvers: flat plate boundary layer and NACA airfoils, (2nd International Workshop on High Order Methods, Cologne, (2013)), 1-12
[15] Marek, M.; Tyliszczak, A.; Bogusławski, A., Large eddy simulation of incompressible free round jet with discontinuous Galerkin method, Int. J. Numer. Methods Fluids, 79, 4, 164-182, (2015)
[16] Noventa, G.; Massa, F.; Bassi, F.; Colombo, A.; Franchina, N.; Ghidoni, A., A high-order discontinuous Galerkin solver for unsteady incompressible turbulent flows, Comput. Fluids, 139, 248-260, (2016) · Zbl 1390.76344
[17] Crivellini, A.; D’Alessandro, V.; Bassi, F., High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations, Comput. Fluids, 81, 122-133, (2013) · Zbl 1285.76014
[18] Ferrer, E., A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes for simulating cross-flow turbines, (2012), University of Oxford, Ph.D. thesis
[19] Tavelli, M.; Dumbser, M., A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319, 294-323, (2016) · Zbl 1349.76271
[20] Crivellini, A.; D’Alessandro, V.; Bassi, F., Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier-Stokes equations: benchmark results for the flow past a sphere up to \(R e = 500\), Comput. Fluids, 86, 442-458, (2013) · Zbl 1290.76022
[21] Bassi, F.; Crivellini, A.; Pietro, D. D.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 2, 794-815, (2006) · Zbl 1158.76313
[22] Nguyen, N.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible navier—stokes equations, J. Comput. Phys., 230, 4, 1147-1170, (2011) · Zbl 1391.76353
[23] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Eng., 307, 339-361, (2016)
[24] Kronbichler, M.; Wall, W. A., A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, (2016), arXiv preprint
[25] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 251, 1067-1095, (2005) · Zbl 1069.76029
[26] Cockburn, B.; Kanschat, G.; Schötzau, D., An equal-order DG method for the incompressible Navier-Stokes equations, J. Sci. Comput., 40, 1-3, 188-210, (2009) · Zbl 1203.76080
[27] Schötzau, D.; Schwab, C.; Toselli, A., Mixed hp-DGFEM for incompressible flows, SIAM J. Numer. Anal., 40, 6, 2171-2194, (2002) · Zbl 1055.76032
[28] Klein, B.; Kummer, F.; Keil, M.; Oberlack, M., An extension of the SIMPLE based discontinuous Galerkin solver to unsteady incompressible flows, Int. J. Numer. Methods Fluids, 77, 10, 571-589, (2015)
[29] Rhebergen, S.; Cockburn, B.; van der Vegt, J. J.W., A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 233, 339-358, (2013) · Zbl 1286.76033
[30] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 44-47, 6011-6045, (2006) · Zbl 1122.76072
[31] Botti, L.; Pietro, D. A.D., A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230, 3, 572-585, (2011) · Zbl 1283.76030
[32] Shahbazi, K.; Fischer, P. F.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 1, 391-407, (2007) · Zbl 1216.76034
[33] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 2, 414-443, (1991) · Zbl 0738.76050
[34] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J. Comput. Phys., 231, 21, 7037-7056, (2012) · Zbl 1284.35311
[35] Hesthaven, J. S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2008), Springer · Zbl 1134.65068
[36] Steinmoeller, D. T.; Stastna, M.; Lamb, K. G., A short note on the discontinuous Galerkin discretization of the pressure projection operator in incompressible flow, J. Comput. Phys., 251, 480-486, (2013) · Zbl 1349.65488
[37] Ferrer, E.; Moxey, D.; Willden, R. H.J.; Sherwin, S. J., Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: continuous and discontinuous Galerkin formulations, Commun. Comput. Phys., 16, 817-840, (2014)
[38] Emamy, N., Numerical simulation of deformation of a droplet in a stationary electric field using DG, (2014), Technische Universität Darmstadt, Ph.D. thesis
[39] Escobar-Vargas, J. A.; Diamessis, P. J.; Sakai, T., A spectral quadrilateral multidomain penalty method model for high Reynolds number incompressible stratified flows, Int. J. Numer. Methods Fluids, 75, 6, 403-425, (2014)
[40] Joshi, S. M.; Diamessis, P. J.; Steinmoeller, D. T.; Stastna, M.; Thomsen, G. N., A post-processing technique for stabilizing the discontinuous pressure projection operator in marginally-resolved incompressible inviscid flow, Comput. Fluids, 139, 120-129, (2016) · Zbl 1390.76325
[41] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp element methods for computational fluid dynamics, (2013), Oxford University Press · Zbl 1256.76003
[42] Olshanskii, M.; Lube, G.; Heister, T.; Löwe, J., Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 198, 49-52, 3975-3988, (2009) · Zbl 1231.76161
[43] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 4, 742-760, (1982) · Zbl 0482.65060
[44] Kopriva, D. A., Implementing spectral methods for partial differential equations: algorithms for scientists and engineers, (2009), Springer · Zbl 1172.65001
[45] Kronbichler, M.; Kormann, K., A generic interface for parallel cell-based finite element operator application, Comput. Fluids, 63, 135-147, (2012) · Zbl 1365.76121
[46] Kronbichler, M.; Kormann, K.; Pasichnyk, I.; Allalen, M., Fast matrix-free discontinuous Galerkin kernels on modern computer architectures, (Kunkel, J. M.; Yokota, R.; Balaji, P.; Keyes, D. E., ISC High Performance 2017, LNCS, vol. 10266, (2017), Springer), 237-255
[47] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 1, 224-230, (2011) · Zbl 1431.76011
[48] Orszag, S. A.; Israeli, M.; Deville, M. O., Boundary conditions for incompressible flows, J. Sci. Comput., 1, 1, 75-111, (1986) · Zbl 0648.76023
[49] Guermond, J.-L.; Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41, 1, 112-134, (2003) · Zbl 1130.76395
[50] Leriche, E.; Perchat, E.; Labrosse, G.; Deville, M. O., Numerical evaluation of the accuracy and stability properties of high-order direct Stokes solvers with or without temporal splitting, J. Sci. Comput., 26, 1, 25-43, (2006) · Zbl 1141.76047
[51] Klein, B.; Kummer, F.; Oberlack, M., A SIMPLE based discontinuous Galerkin solver for steady incompressible flows, J. Comput. Phys., 237, 235-250, (2013) · Zbl 1286.76124
[52] Hillewaert, K., Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries, (2013), Univ. de Louvain, Ph.D. thesis
[53] Riviere, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, (2008), Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 1153.65112
[54] Hartmann, R., Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J. Numer. Anal., 45, 6, 2671-2696, (2007) · Zbl 1189.76341
[55] Krank, B.; Kronbichler, M.; Wall, W. A., Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flow, Int. J. Numer. Methods Fluids, (2017)
[56] Krank, B.; Kronbichler, M.; Wall, W. A., A multiscale approach to hybrid RANS/LES wall modeling, (2017), arXiv preprint
[57] Schott, B., Stabilized cut finite element methods for complex interface coupled flow problems, (2017), Technical University of Munich, Ph.D. thesis
[58] Leriche, E.; Labrosse, G., High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties, SIAM J. Sci. Comput., 22, 4, 1386-1410, (2000) · Zbl 0972.35087
[59] Shahbazi, K., An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys., 205, 2, 401-407, (2005) · Zbl 1072.65149
[60] Gravemeier, V.; Gee, M. W.; Kronbichler, M.; Wall, W. A., An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow, Comput. Methods Appl. Mech. Eng., 199, 13-16, 853-864, (2010) · Zbl 1406.76027
[61] Schroeder, P. W.; Lube, G., Stabilised dg-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes, J. Comput. Phys., 335, 760-779, (2017) · Zbl 1380.65286
[62] Fehn, N.; Wall, W. A.; Kronbichler, M., On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations, (2017), arXiv preprint · Zbl 1380.65204
[63] Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kanschat, G.; Kronbichler, M.; Maier, M.; Turcksin, B.; Wells, D., The library, version 8.4, J. Numer. Math., 24, 3, 135-141, (2016) · Zbl 1348.65187
[64] Orszag, S. A., Spectral methods for problems in complex geometries, J. Comput. Phys., 37, 1, 70-92, (1980) · Zbl 0476.65078
[65] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 468-488, (1984) · Zbl 0535.76035
[66] Fischer, P. F.; Rønquist, E. M.; Dewey, D.; Patera, A. T., Spectral element methods: algorithms and architectures, (Proceedings of the First International Conference on Domain Decomposition Methods for Partial Differential Equations, (1988), SIAM Philadelphia), 173-197
[67] Fischer, P. F.; Lee-Wing, H.; Karniadakis, G. E.; Rønouist, E. M.; Patera, A. T., Recent advances in parallel spectral element simulation of unsteady incompressible flows, Comput. Struct., 30, 1, 217-231, (1988) · Zbl 0668.76039
[68] Maday, Y.; Patera, A. T., Spectral element methods for the incompressible Navier-Stokes equations, (State-of-the-Art Surveys on Computational Mechanics (A90-47176 21-64), (1989), ASME New York), 71-143
[69] Fischer, P. F., Analysis and application of a parallel spectral element method for the solution of the Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 80, 1-3, 483-491, (1990) · Zbl 0722.76059
[70] Fischer, P. F.; Patera, A. T., Parallel spectral element solution of the Stokes problem, J. Comput. Phys., 92, 2, 380-421, (1991) · Zbl 0709.76106
[71] Tufo, H. M.; Fischer, P. F., Terascale spectral element algorithms and implementations, (Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, (1999), ACM)
[72] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order methods for incompressible fluid flow, vol. 9, (2002), Cambridge University Press · Zbl 1007.76001
[73] Bastian, P.; Engwer, C.; Göddeke, D.; Iliev, O.; Ippisch, O.; Ohlberger, M.; Turek, S.; Fahlke, J.; Kaulmann, S.; Müthing, S.; Ribbrock, D., EXA-DUNE: flexible PDE solvers, numerical methods and applications, (Euro-Par 2014: Parallel Processing Workshops, Lecture Notes in Computer Science, (2014), Springer)
[74] May, D. A.; Brown, J.; Le Pourhiet, L., Ptatin3D: high-performance methods for long-term lithospheric dynamics, (Kunkel, J. M.; Ludwig, T.; Meuer, H. W., Supercomputing (SC14), New Orleans, (2014)), 1-11
[75] Kronbichler, M.; Schoeder, S.; Müller, C.; Wall, W. A., Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation, Int. J. Numer. Methods Eng., 106, 9, 712-739, (2016) · Zbl 1352.76058
[76] Adams, M.; Brezina, M.; Hu, J.; Tuminaro, R., Parallel multigrid smoothing: polynomial versus Gauss-Seidel, J. Comput. Phys., 188, 593-610, (2003) · Zbl 1022.65030
[77] Sundar, H.; Stadler, G.; Biros, G., Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer. Linear Algebra Appl., 22, 664-680, (2015) · Zbl 1349.65680
[78] Varga, R. S., Matrix iterative analysis, (2009), Springer Berlin · Zbl 1216.65042
[79] Burstedde, C.; Wilcox, L. C.; Ghattas, O., : scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133, (2011) · Zbl 1230.65106
[80] Bangerth, W.; Burstedde, C.; Heister, T.; Kronbichler, M., Algorithms and data structures for massively parallel generic finite element codes, ACM Trans. Math. Softw., 38, 2, 14:1-14:28, (2011) · Zbl 1365.65247
[81] John, V., Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int. J. Numer. Methods Fluids, 44, 7, 777-788, (2004) · Zbl 1085.76510
[82] Schäfer, M.; Turek, S.; Durst, F.; Krause, E.; Rannacher, R., Benchmark computations of laminar flow around a cylinder, (1996), Springer
[83] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., 30, 1, 539-578, (1998)
[84] Moser, R. D.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to \(R e_\tau = 590\), Phys. Fluids, 11, 4, 943-945, (1999) · Zbl 1147.76463
[85] Vreman, A. W.; Kuerten, J. G.M., Comparison of direct numerical simulation databases of turbulent channel flow at \(R e_\tau = 180\), Phys. Fluids, 26, 1, (2014)
[86] Case, K. M.; Dyson, F. J.; Frieman, E. A.; Grosch, C. E.; Perkins, F. W., Numerical simulation of turbulence, (1973), Stanford Research Institute, Tech. Rep. AD-774 161
[87] Chapman, D. R., Computational aerodynamics development and outlook, AIAA J., 17, 12, 1293-1313, (1979) · Zbl 0443.76060
[88] Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit large eddy simulation: computing turbulent fluid dynamics, (2007), Cambridge University Press · Zbl 1135.76001
[89] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 1, 387-401, (1995) · Zbl 0866.76044
[90] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid, (2001), Elsevier Academic Press London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.