×

zbMATH — the first resource for mathematics

The two-mass contribution to the three-loop pure singlet operator matrix element. (English) Zbl 1380.81433
Summary: We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in \(x\)-space. These terms are relevant for calculating the structure function \(F_2(x, Q^2)\) at \(O(\alpha_s^3)\) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Software:
HarmonicSums; MATAD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Blümlein, A. De Freitas, C. Schneider, K. Schönwald, DESY 17-187.
[2] Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Schneider, C.; Wißbrock, F., Nucl. Phys. B, 921, 585, (2017)
[3] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Nucl. Phys. B, 890, 48, (2014)
[4] Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Wißbrock, F.; Ablinger, J.; Blümlein, J.; Hasselhuhn, A.; Klein, S.; Schneider, C.; Wißbrock, F., PoS RADCOR, 2011, (2011)
[5] Harlander, R.; Seidensticker, T.; Steinhauser, M., Phys. Lett. B, 426, 125, (1998)
[6] Seidensticker, T.
[7] J. Ablinger, et al., in preparation.
[8] Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F., Nucl. Phys. B, 882, 263, (2014)
[9] Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C., Nucl. Phys. B, 885, 280, (2014)
[10] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F., Nucl. Phys. B, 886, 733, (2014)
[11] Blümlein, J.; Falcioni, G.; De Freitas, A., Nucl. Phys. B, 910, 568, (2016)
[12] Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Phys. Rev. D, 94, 11, (2016)
[13] Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Wißbrock, F., Nucl. Phys. B, 844, 26, (2011)
[14] Blümlein, J.; Hasselhuhn, A.; Klein, S.; Schneider, C., Nucl. Phys. B, 866, 196, (2013)
[15] Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Nucl. Phys. B, 897, 612, (2015)
[16] Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Schneider, C., Phys. Rev. D, 92, 11, (2015)
[17] J. Ablinger, et al., DESY 15-112.
[18] Behring, A.; Bierenbaum, I.; Blümlein, J.; De Freitas, A.; Klein, S.; Wißbrock, F., Eur. Phys. J. C, 74, 9, 3033, (2014)
[19] Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F., PoS LL, 2016, (2016)
[20] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Comput. Phys. Commun., 202, 33, (2016)
[21] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, DESY 17-199.
[22] Bierenbaum, I.; Blümlein, J.; Klein, S., Nucl. Phys. B, 820, 417, (2009)
[23] Steinhauser, M., Comput. Phys. Commun., 134, 335, (2001)
[24] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Nucl. Phys. B, 922, 1, (2017)
[25] Blümlein, J.; De Freitas, A.; van Neerven, W., Nucl. Phys. B, 855, 508, (2012)
[26] Buza, M.; Matiounine, Y.; Smith, J.; Migneron, R.; van Neerven, W. L., Nucl. Phys. B, 472, 611, (1996)
[27] Buza, M.; Matiounine, Y.; Smith, J.; van Neerven, W. L., Eur. Phys. J. C, 1, 301, (1998)
[28] Bierenbaum, I.; Blümlein, J.; Klein, S., Nucl. Phys. B, 780, 40, (2007)
[29] Bierenbaum, I.; Blümlein, J.; Klein, S.; Schneider, C., Nucl. Phys. B, 803, 1, (2008)
[30] Bierenbaum, I.; Blümlein, J.; Klein, S., Phys. Lett. B, 672, 401, (2009)
[31] Barnes, E. W., Proc. Lond. Math. Soc. (2), 6, 141, (1908)
[32] Barnes, E. W., Q. J. Math., 41, 136, (1910)
[33] Mellin, H., Math. Ann., 68, 3, 305, (1910)
[34] Whittaker, E. T.; Watson, G. N., A course of modern analysis, (1927), Cambridge University Press Cambridge, reprinted 1996 · JFM 53.0180.04
[35] Titchmarsh, E. C., Introduction to the theory of Fourier integrals, (1937), Calendron Press Oxford, 2nd edition, 1948 · JFM 63.0367.05
[36] Vermaseren, J. A.M.
[37] Czakon, M., Comput. Phys. Commun., 175, 559, (2006)
[38] Smirnov, A. V.; Smirnov, V. A., Eur. Phys. J. C, 62, 445, (2009)
[39] Vermaseren, J. A.M.; Blümlein, J.; Kurth, S., Int. J. Mod. Phys. A, Phys. Rev. D, 60, 2037, (1999)
[40] Schneider, C., Sémin. Lothar. Comb., 56, (2007)
[41] Schneider, C., Computer algebra in quantum field theoryintegration, summation and special functions, (Schneider, C.; Blümlein, J., Texts and Monographs in Symbolic Computation, (2013), Springer Wien), 325
[42] Ablinger, J., A computer algebra toolbox for harmonic sums related to particle physics, PoS LL, (2009), J. Kepler University Linz, Diploma Thesis
[43] Ablinger, J.; Blümlein, J.; Schneider, C., J. Math. Phys., 52, (2011)
[44] Ablinger, J.; Blümlein, J.; Schneider, C., J. Math. Phys., 54, (2013)
[45] Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Blümlein, J.; Hasselhuhn, A.; Schneider, C.; Schneider, C., Nucl. Phys. Proc. Suppl., PoS RADCOR, J. Phys. Conf. Ser., 523, 110, (2014)
[46] Remiddi, E.; Vermaseren, J. A.M., Int. J. Mod. Phys. A, 15, 725, (2000)
[47] Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C., J. Math. Phys., 55, (2014)
[48] Blümlein, J., Comput. Phys. Commun., 159, 19, (2004)
[49] Alekhin, S.; Blümlein, J.; Daum, K.; Lipka, K.; Moch, S., Phys. Lett. B, 720, 172, (2013)
[50] Olive, K. A., Chin. Phys. C, 38, (2014)
[51] Blümlein, J.; Schneider, C., Phys. Lett. B, 771, 31, (2017)
[52] Lewin, L., Dilogarithms and associated functions, (1958), Macdonald London · Zbl 0083.35904
[53] Lewin, L., Polylogarithms and associated functions, (1981), North-Holland New York · Zbl 0465.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.