×

Cosmological perturbations of unimodular gravity and general relativity are identical. (English) Zbl 1380.83190

Summary: Unimodular gravity (UG) is a restricted version of general relativity (GR) in which the variation of the metric determinant is set to zero and the field equations are given by the trace-free part of the full Einstein equations. The background equations in UG and GR are identical. It was recently claimed that the first order contribution in the temperature fluctuations of the Cosmic Microwave Background (CMB) in UG is different from GR. In this work, we calculate the first order perturbation equations in UG and show that the Sachs-Wolfe effect in UG, in terms of gauge invariant variables, is identical to GR. We also show that the second order perturbation equation of Mukhanov-Sasaki variable in UG, is identical to GR. The only difference comes from the gauge choices due the constraint on the metric determinant. Hence, UG and GR are identical and indistinguishable in CMB data on large scales.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
85A40 Astrophysical cosmology
85A25 Radiative transfer in astronomy and astrophysics

Software:

Cadabra
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ade, P.A.R., et al.: Planck Collaboration. Planck 2013 results. XVI, Cosmological parameters (2013). [arXiv:1303.5076]
[2] Ade, P.A.R., et al.: Planck Collaboration. Planck 2015 results. XIII, Cosmological parameters (2015). [arXiv:1502.0158]
[3] Riess, A.G., et al.: Supernova Search Team Collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). [astro-ph/9805201] · Zbl 1027.83544
[4] Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[5] Padmanabhan, T.: Cosmological constant: the weight of the vacuum. Phys. Rept. 380, 235 (2003). [hep-th/0212290] · Zbl 1027.83544 · doi:10.1016/S0370-1573(03)00120-0
[6] Martin, J.: Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). Comptes Rendus Physique 13, 566 (2012). [arXiv:1205.3365] · doi:10.1016/j.crhy.2012.04.008
[7] Anderson, J.L., Finkelstein, D.: Cosmological constant and fundamental length. Am. J. Phys. 39, 901 (1971) · doi:10.1119/1.1986321
[8] Unruh, W.G.: A unimodular theory of canonical quantum gravity. Phys. Rev. D 40, 1048 (1989) · doi:10.1103/PhysRevD.40.1048
[9] Finkelstein, D.R., Galiautdinov, A.A., Baugh, J.E.: Unimodular relativity and cosmological constant. J. Math. Phys. 42, 340 (2001). [gr-qc/0009099] · Zbl 1063.83572 · doi:10.1063/1.1328077
[10] Ellis, G.F., van Elst, H., Murugan, J., Uzan, J.P.: On the trace-free einstein equations as a viable alternative to general relativity. Class. Quantum Gravity 28, 225007 (2011). [arXiv:1008.1196] · Zbl 1230.83077 · doi:10.1088/0264-9381/28/22/225007
[11] Ellis, G.F.R.: The trace-free Einstein equations and inflation. Gen. Relativ. Gravit. 46, 1619 (2014). [arXiv:1306.3021] · Zbl 1286.83076 · doi:10.1007/s10714-013-1619-5
[12] Jain, P., Jaiswal, A., Karmakar, P., Kashyap, G., Singh, N.K.: Cosmological implications of unimodular gravity. JCAP 1211, 003 (2012). [arXiv:1109.0169] · doi:10.1088/1475-7516/2012/11/003
[13] Cho, I., Singh, N.K.: Unimodular theory of gravity and inflation. Class. Quantum Gravity 32(13), 135020 (2015). [arXiv:1412.6205] · Zbl 1327.83267 · doi:10.1088/0264-9381/32/13/135020
[14] Shaposhnikov, M., Zenhausern, D.: Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 671, 187 (2009). [arXiv:0809.3395] · doi:10.1016/j.physletb.2008.11.054
[15] Blas, D., Shaposhnikov, M., Zenhausern, D.: Scale-invariant alternatives to general relativity. Phys. Rev. D 84, 044001 (2011). [arXiv:1104.1392] · doi:10.1103/PhysRevD.84.044001
[16] Garcia-Bellido, J., Rubio, J., Shaposhnikov, M., Zenhausern, D.: Higgs-Dilaton cosmology: from the early to the late universe. Phys. Rev. D 84, 123504 (2011). [arXiv:1107.2163] · doi:10.1103/PhysRevD.84.123504
[17] Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Unimodular \[F(R)F\](R) gravity. JCAP 1605(05), 046 (2016). [arXiv:1512.07223] · doi:10.1088/1475-7516/2016/05/046
[18] Smolin, L.: The quantization of unimodular gravity and the cosmological constant problems. Phys. Rev. D 80, 084003 (2009). [arXiv:0904.4841] · doi:10.1103/PhysRevD.80.084003
[19] Smolin, L.: Unimodular loop quantum gravity and the problems of time. Phys. Rev. D 84, 044047 (2011). [arXiv:1008.1759] · doi:10.1103/PhysRevD.84.044047
[20] Barceló, C., Carballo-Rubio, R., Garay, L.J.: Absence of cosmological constant problem in special relativistic field theory of gravity. [arXiv:1406.7713] · Zbl 1404.83078
[21] Carballo-Rubio, R.: Longitudinal diffeomorphisms obstruct the protection of vacuum energy. Phys. Rev. D91(12), 124071 (2015). [arXiv:1502.0527]
[22] Eichhorn, A.: On unimodular quantum gravity. Class. Quantum Gravity 30, 115016 (2013). [arXiv:1301.0879] · Zbl 1271.83064 · doi:10.1088/0264-9381/30/11/115016
[23] Bufalo, R., Oksanen, M., Tureanu, A.: How unimodular gravity theories differ from general relativity at quantum level. Eur. Phys. J. C 75(10), 477 (2015). [arXiv:1505.04978] · doi:10.1140/epjc/s10052-015-3683-3
[24] Brown, I.A., Latta, J., Coley, A.: Backreaction: gauge and frame dependences. Phys. Rev. D 87(4), 043518 (2013). [arXiv:1211.0802] · doi:10.1103/PhysRevD.87.043518
[25] Gao, C., Brandenberger, R.H., Cai, Y., Chen, P.: Cosmological perturbations in unimodular gravity. JCAP 1409, 021 (2014). [arXiv:1405.1644] · doi:10.1088/1475-7516/2014/09/021
[26] Mukhanov, V.F., Abramo, L.R.W., Brandenberger, R.H.: On the back reaction problem for gravitational perturbations. Phys. Rev. Lett. 78, 1624-1627 (1997). [gr-qc/9609026] · doi:10.1103/PhysRevLett.78.1624
[27] Malik, K.A.: Gauge-invariant perturbations at second order: multiple scalar fields on large scales. JCAP 0511, 005 (2005). [astro-ph/0506532] · doi:10.1088/1475-7516/2005/11/005
[28] Malik, K.A.: A not so short note on the Klein-Gordon equation at second order. JCAP 0703, 004 (2007). [astro-ph/0610864] · doi:10.1088/1475-7516/2007/03/004
[29] Wands, D., Malik, K.A., Lyth, D.H., Liddle, A.R.: A new approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 62, 043527 (2000). [astro-ph/0003278] · doi:10.1103/PhysRevD.62.043527
[30] Lyth, D.H., Wands, D.: Conserved cosmological perturbations. Phys. Rev. D 68, 103515 (2003). [astro-ph/0306498] · doi:10.1103/PhysRevD.68.103515
[31] Mukhanov, V., Feldman, H., Brandenberger, R.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992) · doi:10.1016/0370-1573(92)90044-Z
[32] Mukhanov, V.F.: CMB-slow, or how to estimate cosmological parameters by hand. Int. J. Theor. Phys. 43, 623-668 (2004). [astro-ph/0303072] · Zbl 1064.85019 · doi:10.1023/B:IJTP.0000048168.90282.db
[33] Peter, P., Uzan, J.: Primordial Cosmology. Oxford University Press, Oxford (2009)
[34] Peeters, K.: Introducing Cadabra: a symbolic computer algebra system for field theory problems (2007) hep-th/0701238 · Zbl 1196.68333
[35] Peeters, K.: A field-theory motivated approach to symbolic computer algebra. Comput. Phys. Commun. 176, 550-558 (2007), [cs/0608005] · Zbl 1196.68333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.