×

zbMATH — the first resource for mathematics

A generalized classification scheme for crane scheduling with interference. (English) Zbl 1380.90108
Summary: Nowadays, many industries rely on cranes for efficiently executing storage and retrieval operations of goods. Areas of application are, for instance, container logistics in seaports and warehousing operations in automated storage and retrieval systems. Therefore, it is not astounding that plenty scientific papers on crane scheduling in many different yet closely related logistics settings have accumulated. In many of these problems, crane interference occurs. A prominent example is non-crossing constraints where cranes share a common pathway and cannot overtake each other. In order to structure this vast field of research, this paper provides a classification scheme for crane scheduling problems with crane interference. We apply this scheme to classify the existing literature, to determine the status-quo of complexity results, and to identify future research needs.

MSC:
90B35 Deterministic scheduling theory in operations research
90B06 Transportation, logistics and supply chain management
Software:
BRP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alicke, K., Modeling and optimization of the intermodal terminal mega hub, OR Spectrum, 24, 1, 1-17, (2002) · Zbl 0993.90012
[2] Aron, I.; Genc-Kaya, L.; Harjunkoski, I.; Hoda, S.; Hooker, J. N., Factory crane scheduling by dynamic programming, (Wood, R. K.; Dell, R. F., Operations research, computing and homeland defense, (2011), INFORMS), 93-107
[3] Ballis, A.; Golias, J., Comparative evaluation of existing and innovative rail-road freight transport terminals, Transportation Research Part A: Policy and Practice, 36, 593-611, (2002)
[4] Bierwirth, C.; Meisel, F., A fast heuristic for quay crane scheduling with interference constraints, Journal of Scheduling, 12, 4, 345-360, (2009) · Zbl 1185.90140
[5] Bierwirth, C.; Meisel, F., A survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research, 202, 3, 615-627, (2010) · Zbl 1176.90373
[6] Bierwirth, C.; Meisel, F., A follow-up survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research, 244, 3, 675-689, (2015) · Zbl 1346.90326
[7] Błażewicz, J.; Ecker, K.; Pesch, E.; Schmidt, G.; Wȩglarz, J., Handbook on scheduling, (2007), Springer Berlin
[8] Bortfeldt, A.; Forster, F., A tree search procedure for the container pre-marshalling problem, European Journal of Operational Research, 217, 3, 531-540, (2012) · Zbl 1244.90122
[9] Boysen, N.; Briskorn, D.; Emde, S., A decomposition heuristic for the twin robots scheduling problem, Naval Research Logistics, 62, 16-22, (2015)
[10] Boysen, N.; Emde, S.; Fliedner, M., Determining crane areas for balancing workload among interfering and non-interfering cranes, Naval Research Logistics, 59, 656-662, (2012)
[11] Boysen, N.; Fliedner, M., Determining crane areas in intermodal transshipment yards: the yard partition problem, European Journal of Operational Research, 204, 336-342, (2010) · Zbl 1178.90142
[12] Boysen, N.; Fliedner, M.; Jaehn, F.; Pesch, E., A survey on container processing in railway yards, Transportation Science, 47, 312-329, (2012)
[13] Boysen, N.; Fliedner, M.; Kellner, M., Determining fixed crane areas in rail-rail transshipment yards, Transportation Research Part E, 46, 1005-1016, (2010)
[14] Boysen, N.; Fliedner, M.; Scholl, A., A classification of assembly line balancing problems, European Journal of Operational Research, 183, 674-693, (2007) · Zbl 1179.90103
[15] Boysen, N.; Stephan, K., A survey on single crane scheduling in automated storage/retrieval systems, European Journal of Operational Research, 254, 3, 691-704, (2016) · Zbl 1346.90330
[16] Briskorn, D.; Angeloudis, P., Scheduling co-operating stacking cranes with predetermined container sequences, Discrete Applied Mathematics, 201, 70-85, (2016) · Zbl 1336.90009
[17] Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E., Resource-constrained project scheduling: notation, classification, models, and methods, European Journal of Operational Research, 112, 3-41, (1999) · Zbl 0937.90030
[18] Brucker, P., & Knust, S. (2013). Complexity results for scheduling problems. http://www.informatik.uni-osnabrueck.de/knust/class/, Accessed August 2016. · Zbl 0946.90026
[19] Cao, J. X.; Lee, D.-H.; Chen, J. H.; Shi, Q., The integrated yard truck and yard crane scheduling problem: benders’ decomposition-based methods, Transportation Research Part E: Logistics and Transportation Review, 46, 3, 344-353, (2010)
[20] Carlo, H. J.; Martínez-Acevedo, F. L., Priority rules for twin automated stacking cranes that collaborate, Computers & Industrial Engineering, 89, 23-33, (2015)
[21] Carlo, H. J.; Vis, I. F.A., Sequencing dynamic storage systems with multiple lifts and shuttles, International Journal of Production Economics, 140, 844-853, (2012)
[22] Carlo, H. J.; Vis, I. F.A.; Roodbergen, K. J., Storage yard operations in container terminals: literature overview, trends, and research directions, European Journal of Operational Research, 235, 2, 412-430, (2014) · Zbl 1305.90007
[23] Carlo, H. J.; Vis, I. F.A.; Roodbergen, K. J., Seaside operations in container terminals: literature overview, trends, and research directions, Flexible Services and Manufacturing Journal, 27, 224-262, (2015)
[24] Caserta, M.; Schwarze, S.; Voß, S., A mathematical formulation and complexity considerations for the blocks relocation problem, European Journal of Operational Research, 219, 1, 96-104, (2012) · Zbl 1244.90164
[25] Caserta, M.; Voß, S.; Sniedovich, M., Applying the corridor method to a blocks relocation problem, OR Spectrum, 33, 4, 915-929, (2011) · Zbl 1229.90019
[26] Chen, J. H.; Lee, D.-H.; Cao, J. X., Heuristics for quay crane scheduling at indented berth, Transportation Research Part E: Logistics and Transportation Review, 47, 6, 1005-1020, (2011)
[27] Chen, J. H.; Lee, D.-H.; Goh, M., An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem, European Journal of Operational Research, 232, 1, 198-208, (2014) · Zbl 1305.90176
[28] Choe, R.; Park, T.; Ok, S. M.; Ryu, K. R., Real-time scheduling for non-crossing stacking cranes in an automated container terminal, (Orgun, M.; Thornton, J., Ai 2007, LNAI, Vol. 4830, (2007), Springer), 625-631
[29] Choe, R.; Yang, Y.; Ryu, K. R., Real-time scheduling of twin stacking cranes in an auto-mated container terminal using a genetic algorithm, SAC’12, 238-243, (2012), Riva del Garda Italy
[30] Choo, S.; Klabjan, D.; Simchi-Levi, D., Multiship crane sequencing with yard congestion constraints, Transportation Science, 44, 1, 98-115, (2010)
[31] Chung, S.; Chan, F. T., A workload balancing genetic algorithm for the quay crane scheduling problem, International Journal of Production Research, 51, 16, 4820-4834, (2013)
[32] Chung, S.; Choy, K., A modified genetic algorithm for quay crane scheduling operations, Expert Systems with Applications, 39, 4, 4213-4221, (2012)
[33] Dell, R.; Royset, R.; Zyngirdis, I., Optimizing container movement using one and two automated stacking cranes, Journal of Industrial and Management Optimization, 5, 285-302, (2009) · Zbl 1188.90175
[34] Diabat, A.; Theodorou, E., An integrated quay crane assignment and scheduling problem, Computers & Industrial Engineering, 73, 115-123, (2014)
[35] Dohn, A.; Clausen, J., Optimising the slab yard planning and crane scheduling problem using a two-stage heuristic, International Journal of Production Research, 48, 15, 4585-4608, (2010) · Zbl 1197.90202
[36] Dorndorf, U.; Schneider, F., Scheduling automated triple cross-over stacking cranes in a container yard, OR Spectrum, 32, 617-632, (2010) · Zbl 1200.90072
[37] Dyckhoff, H., A typology of cutting and packing problems, European Journal of Operational Research, 44, 145-159, (1990) · Zbl 0684.90076
[38] Egbelu, P. J., Framework for dynamic positioning of storage/retrieval machines in an automated storage/retrieval system, International Journal of Production Research, 29, 1, 17-37, (1991)
[39] Emde, S.; Boysen, N., 1-dimensional vehicle scheduling with a front-end depot and non-crossing constraints, OR Spectrum, 36, 2, 381-400, (2014) · Zbl 1290.90038
[40] Erdoğan, G.; Battarra, M.; Laporte, G., Scheduling twin robots on a line, Naval Research Logistics, 61, 2, 119-130, (2014)
[41] Expósito-Izquierdo, C.; González-Velarde, J. L.; Melián-Batista, B.; Moreno-Vega, J. M., Hybrid estimation of distribution algorithm for the quay crane scheduling problem, Applied Soft Computing, 13, 10, 4063-4076, (2013)
[42] Forster, F.; Bortfeldt, A., A tree search procedure for the container relocation problem, Computers & Operations Research, 39, 2, 299-309, (2012) · Zbl 1251.90050
[43] Fu, Y.-M.; Diabat, A.; Tsai, I.-T., A multi-vessel quay crane assignment and scheduling problem: formulation and heuristic solution approach, Expert Systems with Applications, 41, 15, 6959-6965, (2014)
[44] Ge, P.; Wang, J.; Jin, M.; Ren, P.; Gao, H., An efficient heuristic algorithm for overhead cranes scheduling operations in workshop, Applied Mathematics & Information Sciences, 6, 1087-1094, (2012)
[45] Gellert, T.; König, F., 1D vehicle scheduling with conflicts, Proceedings of the workshop on algorithm engineering and experiments, ALENEX 2011, Vol. 5, 107-115, (2011), Society for Industrial and Applied Mathematics
[46] Gharehgozli, A. H.; Laporte, G.; Yu, Y.; de Koster, R., Scheduling twin yard cranes in a container block, Transportation Science, 49, 3, 686-705, (2015)
[47] Graham, R.; Lawler, E.; Lenstra, J.; Kan, A., Optimization and approximation in deterministic sequencing and scheduling: a survey, (P. L. Hammer, E. J.; Korte, B., Discrete optimization ii proceedings of the advanced research institute on discrete optimization and systems applications, Annals of Discrete Mathematics, Vol. 5, (1979), Elsevier), 287-326 · Zbl 0411.90044
[48] Guan, Y.; Yang, K.-H.; Zhou, Z., The crane scheduling problem: models and solution approaches, Annals of Operations Research, 203, 1, 119-139, (2013) · Zbl 1269.90041
[49] Guo, P.; Cheng, W.; Wang, Y., A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints, Engineering Optimization, 46, 10, 1411-1429, (2014)
[50] Hakam, M. H.; Solvang, W. D.; Hammervoll, T., A genetic algorithm approach for quay crane scheduling with non-interference constraints at narvik container terminal, International Journal of Logistics Research and Applications, 15, 4, 269-281, (2012)
[51] Han, M.-H.; McGinnis, L. F.; Shieh, J. S.; White, J. A., On sequencing retrievals in an automated storage/retrieval system, IIE Transactions, 19, 1, 56-66, (1987)
[52] Heinrichs, U.; Moll, C., On the scheduling of one-dimensional transport systems, Technical Report, (1997)
[53] Hino, H.; Kobayashi, Y.; Higashi, T.; Ota, J., Control methodology of stacker cranes for collision avoidance considering dynamics in a warehouse, Proceedings of the 2009 international conference on robotics and biomimetics, ROBIO’09, 983-988, (2009), IEEE Press Piscataway, NJ, USA
[54] Javanshir, H.; Ganji, S. R.S., Yard crane scheduling in port container terminals using genetic algorithm, Journal of Industrial Engineering International, 6, 11, 39-50, (2010)
[55] Kaveshgar, N.; Huynh, N.; Rahimian, S. K., An efficient genetic algorithm for solving the quay crane scheduling problem, Expert Systems with Applications, 39, 18, 13108-13117, (2012)
[56] Kellner, M.; Boysen, N., Rmg vs. drmg: an evaluation of different crane configurations in intermodal transshipment yards, EURO Journal on Transportation and Logistics, 4, 355-377, (2015)
[57] Kemme, N., Effects of storage block layout and automated yard crane systems on the performance of seaport container terminals, OR Spectrum, 34, 563-591, (2012) · Zbl 1244.90144
[58] Kendall, D., Stochastic processes occurring the theory of queues and their analysis by the method of imbedded Markov chains, Annals of Mathematical Statistics, 24, 338-354, (1953) · Zbl 0051.10505
[59] Kim, B.-I.; Heragu, S. S.; Graves, R. J.; Onge, A. S., Clustering-based order-picking sequence algorithm for an automated warehouse, International Journal of Production Research, 41, 15, 3445-3460, (2003) · Zbl 1052.90598
[60] Kim, K. H.; Hong, G.-P., A heuristic rule for relocating blocks, Computers & Operations Research, 33, 4, 940-954, (2006) · Zbl 1079.90079
[61] Kim, K. H.; Park, Y. M., A crane scheduling method for port container terminals, European Journal of Operational Research, 156, 3, 752-768, (2004) · Zbl 1062.90027
[62] Klaws, J.; Stahlbock, R.; Voß, S., Container terminal yard operations - simulation of a side-loaded container block served by triple rail mounted gantry cranes, (et al., J. B., ICCL 2011, LNCS, Vol. 6971, (2007), Springer), 243-255
[63] Kung, Y.; Kobayashi, Y.; Higashi, T.; Ota, J., Motion planning of two stacker cranes in a large-scale automated storage/retrieval system, Journal of Mechanical Systems for Transportation and Logistics, 5, 71-85, (2012)
[64] Kung, Y.; Kobayashi, Y.; Higashi, T.; Sugi, M.; Ota, J., Order scheduling of multiple stacker cranes on common rails in an automated storage/retrieval system, International Journal of Production Research, 52, 1171-1187, (2014)
[65] Lee, D.-H.; Chen, J. H., An improved approach for quay crane scheduling with non-crossing constraints, Engineering Optimization, 42, 1, 1-15, (2010)
[66] Lee, D.-H.; Chen, J. H.; Cao, J. X., Quay crane scheduling for an indented berth, Engineering Optimization, 43, 9, 985-998, (2011)
[67] Lee, D.-H.; Wang, H. Q., An approximation algorithm for quay crane scheduling with handling priority in port container terminals, Engineering Optimization, 42, 12, 1151-1161, (2010)
[68] Lee, D.-H.; Wang, H. Q., Integrated discrete berth allocation and quay crane scheduling in port container terminals, Engineering Optimization, 42, 8, 747-761, (2010)
[69] Lee, D.-H.; Wang, H. Q.; Miao, L., Quay crane scheduling with non-interference constraints in port container terminals, Transportation Research Part E, 44, 1, 124-135, (2008)
[70] Lee, D.-H.; Wang, H. Q.; Miao, L., Quay crane scheduling with handling priority in port container terminals, Engineering Optimization, 40, 2, 179-189, (2008)
[71] Legato, P.; Trunfio, R., A local branching-based algorithm for the quay crane scheduling problem under unidirectional schedules, 4OR, 12, 2, 123-156, (2014) · Zbl 1307.90096
[72] Legato, P.; Trunfio, R.; Meisel, F., Modeling and solving rich quay crane scheduling problems, Computers & Operations Research, 39, 9, 2063-2078, (2012) · Zbl 1251.90163
[73] Leung, J. M.Y.; Zhang, G.; Yang, X.; Mak, R.; Lam, K., Optimal cyclic multi-hoist scheduling: A mixed integer programming approach, Operations Research, 52, 6, 965-976, (2004) · Zbl 1165.90460
[74] Li, W.; Goh, M.; Wu, Y.; Petering, M.; de Souza, R.; Wu, Y., A continuous time model for multiple yard crane scheduling with last minute job arrivals, International Journal of Production Economics, 136, 2, 332-343, (2012)
[75] Li, W.; Wu, Y.; Petering, M.; Goh, M.; de Souza, R., Discrete time model and algorithms for container yard crane scheduling, European Journal of Operational Research, 198, 165-172, (2009) · Zbl 1163.90496
[76] Lieberman, R. W.; Turksen, I., Crane scheduling problems, AIIE Transactions, 13, 304-311, (1981)
[77] Lieberman, R. W.; Turksen, I., Two-operation crane scheduling problems, AIIE Transactions, 14, 147-155, (1982)
[78] Lim, A.; Rodrigues, B.; Xiao, F.; Zhu, Y., Crane scheduling with spatial constraints, Naval Research Logistics, 51, 3, 386-406, (2004) · Zbl 1054.90036
[79] Lim, A.; Rodrigues, B.; Xu, Z., A m-parallel crane scheduling problem with a non-crossing constraint, Naval Research Logistics, 54, 2, 115-127, (2007) · Zbl 1126.90025
[80] Liu, J.; Wan, Y.-W.; Wang, L., Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures, Naval Research Logistics, 53, 1, 60-74, (2006) · Zbl 1112.90031
[81] Lu, Z.; Han, X.; Xi, L., Simultaneous berth and quay crane allocation problem in container terminal, Advanced Science Letters, 4, 6-7, 2113-2118, (2011)
[82] Lu, Z.; Han, X.; Xi, L.; Erera, A. L., A heuristic for the quay crane scheduling problem based on contiguous bay crane operations, Computers & Operations Research, 39, 12, 2915-2928, (2012) · Zbl 1349.90379
[83] Luo, J.; Wu, Y.; Halldorsson, A.; Song, X., Storage and stacking logistics problems in container terminals, OR Insight, 24, 4, 256-275, (2011)
[84] Mak, K.; Sun, D., Scheduling yard cranes in a container terminal using a new genetic approach, Engineering Letters, 17, 4, 274, (2009)
[85] Malmborg, C. J., Interleaving models for the analysis of twin shuttle automated storage and retrieval systems, International Journal of Production Research, 38, 18, 4599-4610, (2000) · Zbl 1045.90504
[86] Manier, M.-A.; Bloch, C., A classification for hoist scheduling problems, International Journal of Flexible Manufacturing Systems, 15, 1, 37-55, (2003)
[87] Meisel, F., The quay crane scheduling problem with time windows, Naval Research Logistics, 58, 7, 619-636, (2011) · Zbl 1241.90052
[88] Meisel, F.; Bierwirth, C., A unified approach for the evaluation of quay crane scheduling models and algorithms, Computers & Operations Research, 38, 3, 683-693, (2011)
[89] Meisel, F.; Bierwirth, C., A framework for integrated berth allocation and crane operations planning in seaport container terminals, Transportation Science, 47, 2, 131-147, (2013)
[90] Meisel, F.; Wichmann, M., Container sequencing for quay cranes with internal reshuffles, OR Spectrum, 32, 3, 569-591, (2010) · Zbl 1201.90031
[91] Meller, R. D.; Mungwattana, A., Multi-shuttle automated storage/retrieval systems, IIE Transactions, 29, 10, 925-938, (1997)
[92] Moccia, L.; Cordeau, J.-F.; Gaudioso, M.; Laporte, G., A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal, Naval Research Logistics, 53, 1, 45-59, (2006) · Zbl 1112.90033
[93] Monaco, M. F.; Sammarra, M., Quay crane scheduling with time windows, one-way and spatial constraints, International Journal of Shipping and Transport Logistics, 3, 4, 454-474, (2011)
[94] Ng, W. C., Crane scheduling in container yards with inter-crane interference, European Journal of Operational Research, 164, 64-78, (2005) · Zbl 1132.90331
[95] Ng, W. C.; Mak, K. L., Quay crane scheduling in container terminals, Engineering Optimization, 38, 6, 723-737, (2006)
[96] Nguyen, S.; Zhang, M.; Johnston, M.; Chen Tan, K., Hybrid evolutionary computation methods for quay crane scheduling problems, Computers & Operations Research, 40, 8, 2083-2093, (2013) · Zbl 1348.90667
[97] Park, T.; Choe, R.; Ok, S.; Ryu, K., Real-time scheduling for twin RMGs in an automated container yard, OR Spectrum, 32, 3, 593-615, (2010) · Zbl 1200.90085
[98] Peterson, B.; Harjunkoski, I.; Hoda, S.; Hooker, J. N., Scheduling multiple factory cranes on a common track, Computers & Operations Research, 48, 2, 102-112, (2014) · Zbl 1348.90299
[99] Pinedo, M., Scheduling: theory, algorithms, and systems, (2012), Springer · Zbl 1239.90002
[100] Rodriguez-Molins, M.; Salido, M. A.; Barber, F., A GRASP-based metaheuristic for the berth allocation problem and the quay crane assignment problem by managing vessel cargo holds, Applied Intelligence, 40, 2, 273-290, (2014)
[101] Roodbergen, K. J.; Vis, I. F.A., A survey of literature on automated storage and retrieval systems, European Journal of Operational Research, 194, 2, 343-362, (2009) · Zbl 1154.90322
[102] Rotter, H., New operating concepts for intermodal transport: the mega hub in hanover/lehrte in Germany, Transportation Planning and Technology, 27, 347-365, (2004)
[103] Saanen, Y.; van Valkengoed, M., Comparison of three automated stacking alternatives by means of simulation, (Kuhl, M. E.; Steiger, N. M.; Armstrong, F. B.; Joines, J. A., Proceedings of the winter simulation conference 2005, (2005)), 1567-1576
[104] Sammarra, M.; Cordeau, J.-F.; Laporte, G.; Monaco, M. F., A tabu search heuristic for the quay crane scheduling problem, Journal of Scheduling, 10, 4-5, 327-336, (2007) · Zbl 1168.90468
[105] Song, L.; Cherrett, T.; Guan, W., Study on berth planning problem in a container seaport: using an integrated programming approach, Computers & Industrial Engineering, 62, 1, 119-128, (2012)
[106] Speer, U.; John, G.; Fischer, K., Scheduling yard cranes considering crane interference, Lecture Notes in Computer Science, 6971, 321-340, (2011)
[107] Stahlbock, R.; Voß, S., Operations research at container terminals: a literature update, OR Spectrum, 30, 1, 1-52, (2008) · Zbl 1133.90313
[108] Stahlbock, R.; Voß, S., Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals, International Journal of Shipping and Transport Logistics, 2, 1, 95-123, (2010)
[109] Steenken, D.; Voß, S.; Stahlbock, R., Container terminal operation and operations research - a classification and literature review, OR Spectrum, 26, 1, 3-49, (2004) · Zbl 1160.90322
[110] Steenken, D.; Winter, T.; Zimmermann, U. T., Stowage and transport optimization in ship planning, (Grötschel, M.; Krumke, S.; Rambau, J., Online optimization of large scale systems, (2001), Springer Berlin), 731-745 · Zbl 1004.90008
[111] Tang, L.; Ren, H., Modelling and a segmented dynamic programming-based heuristic approach for the slab stack shuffling problem, Computers & Operations Research, 37, 2, 368-375, (2010) · Zbl 1175.90406
[112] Tang, L.; Zhao, J.; Liu, J., Modeling and solution of the joint quay crane and truck scheduling problem, European Journal of Operational Research, 236, 731-745, (2014)
[113] Tang, L.; Zhao, R.; Liu, J., Models and algorithms for shuffling problems in steel plants, Naval Research Logistics, 59, 7, 502-524, (2012)
[114] Tavakkoli-Moghaddam, R.; Makui, A.; Salahi, S.; Bazzazi, M.; Taheri, F., An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports, Computers & Industrial Engineering, 56, 1, 241-248, (2009)
[115] Tompkins, J.; White, J.; Bozer, Y.; Tanchoco, J., Facilities planning, (2003), John Wiley & Sons
[116] UNCTAD, Review of maritime transport 2012, (2012), United Nations New York and Geneva
[117] Unsal, O.; Oguz, C., Constraint programming approach to quay crane scheduling problem, Transportation Research Part E, 59, 0, 108-122, (2013)
[118] Vis, I. F.A.; Carlo, H. J., Sequencing two cooperating automated stacking cranes in a container terminal, Transportation Science, 44, 169-182, (2010)
[119] Wang, Y.; Kim, K. H., A quay crane scheduling algorithm considering the workload of yard cranes in a container yard, Journal of Intelligent Manufacturing, 22, 3, 459-470, (2011)
[120] Wang, Y.; Mou, S.; Wu, Y., Task scheduling for multi-tier shuttle warehousing systems, International Journal of Production Research, 53, 5884-5895, (2015)
[121] Wen, C.; Ekşioğlu, S. D.; Greenwood, A.; Zhang, S., Crane scheduling in a shipbuilding environment, International Journal of Production Economics, 124, 1, 40-50, (2010)
[122] Wu, Y.; Li, W.; Petering, M. E.; Goh, M.; Souza, R.d., Scheduling multiple yard cranes with crane interference and safety distance requirement, Transportation Science, 49, 4, 990-1005, (2015)
[123] Zäpfel, G.; Wasner, M., Warehouse sequencing in the steel supply chain as a generalized job shop model, International Journal of Production Economics, 104, 2, 482-501, (2006)
[124] Zeng, Q.; Yang, Z.; Hu, X., Disruption recovery model for berth and quay crane scheduling in container terminals, Engineering Optimization, 43, 9, 967-983, (2011)
[125] Zhang, L.; Khammuang, K.; Wirth, A., On-line scheduling with non-crossing constraints, Operations Research Letters, 36, 5, 579-583, (2008) · Zbl 1210.90096
[126] Zhou, W.; Wu, X., An efficient optimal solution of a two-crane scheduling problem, Asia-Pacific Journal of Operational Research, 26, 31-58, (2009) · Zbl 1177.90194
[127] Zhou, Z.; Li, L., Single hoist cyclic scheduling with multiple tanks: a material handling solution, Computers & Operations Research, 30, 6, 811-819, (2003) · Zbl 1026.90051
[128] Zhou, Z.; Li, L., A solution for cyclic scheduling of multi-hoists without overlapping, Annals of Operations Research, 168, 1, 5-21, (2009) · Zbl 1179.90170
[129] Zhu, Y.; Lim, A., Crane scheduling with non-crossing constraint, Journal of the Operational Research Society, 57, 12, 1464-1471, (2006) · Zbl 1123.90042
[130] ZPMC (2013). Products|cranes|automated container systems. www.zpmc.com/showroom/index.html, Accessed August 2016.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.