×

Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. (English) Zbl 1380.93149

Summary: In this paper, a novel adaptive control for dual-arm cooperative manipulators is proposed to accomplish the hybrid position/force tracking in the presence of dynamic and closed-chain kinematic uncertainties. Self-convergent parameter estimation of the grasped object’s centre of mass and contact force estimation are incorporated into this systematic scheme. Moreover, internal force and contact force tracking objectives are achieved simultaneously by incorporating into the position tracking formula with proper null-space projection and rotation transformation. Noisy force derivative signals are not required. This adaptive controller is mathematically derived based on Lyapunov stability analysis. Three sets of simulations corresponding to three different situations are presented to verify the effectiveness and superiority of the proposed controller.

MSC:

93C40 Adaptive control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C85 Automated systems (robots, etc.) in control theory
93C41 Control/observation systems with incomplete information
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Zollner, R.; Asfour, T.; Dillmann, R., Programming by demonstration: dual-arm manipulation tasks for humanoid robots, (2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. Proceedings, 1 (2004), IEEE)
[2] Lee, J.; Chang, P. H.; Jamisola, R. S., Relative impedance control for dual-arm robots performing asymmetric bimanual tasks, IEEE Trans. Ind. Electron., 61, 7, 3786-3796 (2014)
[3] Lippiello, V.; Villani, L.; Siciliano, B., An open architecture for sensory feedback control of a dual-arm industrial robotic cell, Ind. Robot, 34, 1, 46-53 (2007)
[4] Tzierakis, K. G.; Koumboulis, F. N., Independent force and position control for cooperating manipulators, J. Franklin Inst., 340, 6, 435-460 (2003) · Zbl 1036.93049
[5] Bonitz, R. C.; Hsia, T. C., Internal force-based impedance control for cooperating manipulators, IEEE Trans. Rob. Autom., 12, 1, 78-89 (1996)
[6] Schneider, S. A.; Cannon, R. H., Object impedance control for cooperative manipulation: theory and experimental results, IEEE Trans. Rob. Autom., 8, 3, 383-394 (1992)
[7] Caccavale, F.; Chiacchio, P.; Marino, A.; Villani, L., Six-DOF impedance control of dual-arm cooperative manipulators, IEEE/ASME Trans. Mechatron., 13, 5, 576-586 (2008)
[8] Ren, Y.; Liu, Y.; Jin, M.; Liu, H., Biomimetic object impedance control for dual-arm cooperative 7-DOF manipulators, Rob. Auton. Syst., 75, 273-287 (2016)
[9] Smith, C.; Karayiannidis, Y.; Nalpantidis, L.; Gratal, X.; Qi, P.; Dimarogonas, D. V.; Kragic, D., Dual arm manipulation—a survey, Rob. Auton. Syst., 60, 10, 1340-1353 (2012)
[10] Wen, J. T.; Kreutz-Delgado, K., Motion and force control of multiple robotic manipulators, Automatica, 28, 4, 729-743 (1992) · Zbl 0766.93058
[11] Walker, M. W., Adaptive control of manipulators containing closed kinematic loops, IEEE Trans. Rob. Autom., 6, 1, 10-19 (1990)
[12] Jean, J. H.; Fu, L. C., Adaptive hybrid control strategies for constrained robots, IEEE Trans. Autom. Control, 38, 4, 598-603 (1993) · Zbl 0775.93154
[13] Pagilla, P.; Tomizuka, M., Hybrid force/motion control of two arms carrying an object, (American Control Conference, 1 (June 1994), IEEE: IEEE Baltimore), 195-199
[14] Gueaieb, W.; Karray, F.; Al-Sharhan, S., A robust hybrid intelligent position/force control scheme for cooperative manipulators, IEEE/ASME Trans. Mechatron., 12, 2, 109-125 (2007)
[15] Lian, K. Y.; Chiu, C. S.; Liu, P., Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with H∞ motion/internal force tracking performance, IEEE Trans. Syst. Man Cybern. Part B Cybern., 32, 3, 269-280 (2002)
[16] Zhu, W. H.; Xi, Y. G.; Zhang, Z. J.; Bien, Z.; De Schutter, J., Virtual decomposition based control for generalized high dimensional robotic systems with complicated structure, IEEE Trans. Rob. Autom., 13, 3, 411-436 (1997)
[17] Yoshikawa, T.; Sudou, A., Dynamic hybrid position/force control of robot manipulators-on-line estimation of unknown constraint, IEEE Trans. Rob. Autom., 9, 2, 220-226 (1993)
[18] Namvar, M.; Aghili, F., Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments, IEEE Trans. Rob., 21, 4, 678-694 (2005)
[19] Leite, A. C.; Lizarralde, F.; Hsu, L., Hybrid adaptive vision—force control for robot manipulators interacting with unknown surfaces, Int. J. Rob. Res., 28, 7, 911-926 (2009)
[20] Aghili, F., Adaptive control of manipulators forming closed kinematic chain with inaccurate kinematic model, IEEE/ASME Trans. Mechatron., 18, 5, 1544-1554 (2013)
[21] Jafari, A.; Ryu, J. H., Independent force and position control for cooperating manipulators handling an unknown object and interacting with an unknown environment, J. Franklin Inst., 353, 4, 857-875 (2016) · Zbl 1395.93396
[22] Monfaredi, R.; Rezaei, S. M.; Talebi, A., A new observer-based adaptive controller for cooperative handling of an unknown object, Robotica, 34, 07, 1437-1463 (2016)
[23] Cheah, C. C.; Hou, S. P.; Zhao, Y.; Slotine, J. J.E., Adaptive vision and force tracking control for robots with constraint uncertainty, IEEE/ASME Trans. Mechatron., 15, 3, 389-399 (2010)
[24] Wang, H.; Xie, Y., Adaptive Jacobian position/force tracking control of free-flying manipulators, Rob. Auton. Syst., 57, 2, 173-181 (2009)
[25] Zhao, Y.; Cheah, C. C., Neural network control of multifingered robot hands using visual feedback, IEEE Trans. Neural Networks, 20, 5, 758-767 (2009)
[26] Wimböck, T.; Ott, C.; Albu-Schäffer, A.; Hirzinger, G., Comparison of object-level grasp controllers for dynamic dexterous manipulation, Int. J. Rob. Res., 31, 1, 3-23 (2012)
[27] Abdallah, M. E.; Wampler, C. W.; Platt, R., Object impedance control using a closed-chain task definition, (2010 10th IEEE-RAS International Conference on Humanoid Robots (December 2010), IEEE: IEEE Nashville), 269-274
[28] Chao, L.; Cheah, C. C.; Slotine, J.-J. E., Adaptive Jacobian tracking control of rigid-link electrically driven robots based on visual task-space information, Automatica, 42, 9, 1491-1501 (2006) · Zbl 1128.93372
[29] Spong, M. W.; Hutchinson, S.; Vidyasagar, M., Robot Modeling and Control, 3, 303-304 (2006), Wiley: Wiley New York
[30] Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G., Robotics: Modelling, Planning and Control (2010), Springer Science & Business Media
[31] Walker, I. D.; Freeman, R. A.; Marcus, S. I., Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators, Int. J. Rob. Res., 10, 4, 396-409 (1991)
[32] Chung, J. H.; Yi, B. J.; Kim, W. K., Analysis of internal loading at multiple robotic systems, J. Mech. Sci. Technol., 19, 8, 1554-1567 (2005)
[33] Erhart, S.; Hirche, S., Internal force analysis and load distribution for cooperative multi-robot manipulation, IEEE Trans. Rob., 31, 5, 1238-1243 (2015)
[34] Li, Z.; Li, J.; Kang, Y., Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments, Automatica, 46, 12, 2028-2034 (2010) · Zbl 1205.93080
[35] Zhang, X., Matrix Analysis and Applications, 193-284 (2013), Tsinghua and Springer Publishing House: Tsinghua and Springer Publishing House Beijing
[36] Ren, Y.; Zhou, Y.; Liu, Y., Robust adaptive multi-task tracking control of redundant manipulators with dynamic and kinematic uncertainties and unknown disturbances, Adv. Rob., 31, 9, 482-495 (2017)
[37] Chiaverini, S., Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators, IEEE Trans. Rob. Autom., 13, 3, 398-410 (1997)
[38] Ioannou, P. A.; Sun, J., Robust Adaptive Control, 66-143 (2012), Courier Corporation: Courier Corporation New York
[39] Gueaieb, W.; Al-Sharhan, S.; Bolic, M., Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics, Automatica 43, 5, 842-851 (2007) · Zbl 1117.93351
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.