×

Parameter-robust discretization and preconditioning of Biot’s consolidation model. (English) Zbl 1381.76183


MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage

Software:

FEniCS
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] A. Anandarajah, Computational Methods in Elasticity and Plasticity: Solids and Porous Media, Springer, New York, 2010. · Zbl 1211.74001
[2] O. Axelsson, R. Blaheta, and P. Byczanski, Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices, Comput. Vis. Sci., 15 (2012), pp. 191–207. · Zbl 1388.74035
[3] O. Axelsson and G. Lindskog, On the rate of convergence of the preconditioned conjugate gradient method, Numer. Math., 48 (1986), pp. 499–523. · Zbl 0564.65017
[4] I. Babuška and M. Suri, Locking effects in the finite element approximation of elasticity problems, Numer. Math., 62 (1992), pp. 439–463. · Zbl 0762.65057
[5] F. Ben-Hatira, K. Saidane, and A. Mrabet, A finite element modeling of the human lumbar unit including the spinal cord, J. Biomed. Sci. Eng., 5 (2012), pp. 146–152.
[6] D. Boffi, F. Brezzi, and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements: Compatibility Conditions, D. Boffi and L. Gastaldi, eds., Lecture Notes in Math. 1939, Springer, Berlin, 2008, pp. 45–100. · Zbl 1182.76895
[7] S. C. Brenner and L.-Y. Sung, Linear finite element methods for planar linear elasticity, Math. Comp., 59 (1992), pp. 321–338. · Zbl 0766.73060
[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991. · Zbl 0788.73002
[9] S.-H. Chan, K.-K. Phoon, and F. H. Lee, A modified Jacobi preconditioner for solving ill-conditioned Biot’s consolidation equations using symmetric quasi-minimal residual method, Internat. J. Numer. Anal. Methods Geomech., 25 (2001), pp. 1001–1025. · Zbl 1065.74605
[10] Y. Chen, Y. Luo, and M. Feng, Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem, Appl. Math. Comput., 219 (2013), pp. 9043–9056. · Zbl 1290.74038
[11] O. Coussy, Poromechanics, Wiley, Chichester, England, 2004.
[12] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, ESAIM Math. Model. Numer. Anal., 7 (1973), pp. 33–75. · Zbl 0302.65087
[13] R. D. Falgout and U. M. Yang, Computational Science—ICCS 2002: International Conference Amsterdam, The Netherlands, 2002 Proceedings, Part III, Springer, Berlin, 2002, pp. 632–641,
[14] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. · Zbl 0413.65081
[15] J. B. Haga, H. Osnes, and H. P. Langtangen, A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters, Comput. Geosci., 16 (2012), pp. 723–734.
[16] J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot’s consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), pp. 318–339. · Zbl 1086.76041
[17] A. Logg, K.-A. Mardal, and G. N. Wells, eds., Automated solution of differential equations by the finite element method, Lect. Notes Comput. Sci. Eng. 84, Springer, Heidelberg, 2012. · Zbl 1247.65105
[18] D. S. Malkus and T. J. Hughes, Mixed finite element methods — reduced and selective integration techniques: A unification of concepts, Comput. Methods Appl. Mech. Engrg., 15 (1978), pp. 63 – 81. · Zbl 0381.73075
[19] K.-A. Mardal and J. B. Haga, Block preconditioning of systems of PDEs, in Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin, 2012, pp. 643–655.
[20] K. A. Mardal, X.-C. Tai, and R. Winther, A robust finite element method for Darcy–Stokes flow, SIAM J. Numer. Anal., 40 (2002), pp. 1605–1631. · Zbl 1037.65120
[21] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl., 18 (2011), pp. 1–40. · Zbl 1249.65246
[22] M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), pp. 359–382. · Zbl 0760.73068
[23] M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), pp. 645–667. · Zbl 0791.76047
[24] M. A. Murad, V. Thomée, and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem, SIAM J. Numer. Anal., 33 (1996), pp. 1065–1083. · Zbl 0854.76053
[25] B. F. Nielsen and K.-A. Mardal, Analysis of the minimal residual method applied to ill posed optimality systems, SIAM J. Sci. Comput., 35 (2013), pp. A785–A814.
[26] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case, Comput. Geosci., 11 (2007), pp. 131–144. · Zbl 1117.74015
[27] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case, Comput. Geosci., 11 (2007), pp. 145–158. · Zbl 1117.74016
[28] P. J. Phillips and M. F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12 (2008), pp. 417–435. · Zbl 1155.74048
[29] K. K. Phoon, K. C. Toh, S. H. Chan, and F. H. Lee, An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations, Internat. J. Numer. Methods Engrg., 55 (2002), pp. 377–400. · Zbl 1076.74558
[30] M. B. Reed, An investigation of numerical errors in the analysis of consolidation by finite elements, Internat. J. Numer. Anal. Methods Geomech., 8 (1984), pp. 243–257. · Zbl 0536.73089
[31] S. Rhebergen, G. N. Wells, R. F. Katz, and A. J. Wathen, Analysis of block preconditioners for models of coupled magma/mantle dynamics, SIAM J. Sci. Comput., 36 (2014), pp. A1960–A1977. · Zbl 1299.86001
[32] S. Rhebergen, G. N. Wells, A. J. Wathen, and R. F. Katz, Three-field block preconditioners for models of coupled magma/mantle dynamics, SIAM J. Sci. Comput., 37 (2015), pp. A2270–A2294. · Zbl 1327.65055
[33] R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), pp. 310–340. · Zbl 0979.74018
[34] J. H. Smith and J. A. Humphrey, Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue, Microvasc. Res., 73 (2007), pp. 58–73.
[35] K. Støverud, M. Aln\aes, H. P. Langtangen, V. Haughton, and K.-A. Mardal, Poroelastic modeling of syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and grey matter on pressure wave propagation and fluid movement within the cervical spinal cord, Comput. Methods Biomech. Biomed. Eng., 19 (2016), pp. 686–698.
[36] P. A. Vermeer and A. Verruijt, An accuracy condition for consolidation by finite elements, Internat. J. Numer. Anal. Methods Geomech., 5 (1981), pp. 1–14. · Zbl 0456.73060
[37] H. F. Wang, Theory of Linear Poroelasticity, Princeton Ser. Geophys., Princeton University Press, Princeton, NJ, 2000.
[38] A. J. Wathen, Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. Numer. Anal., 7 (1987), pp. 449–457. · Zbl 0648.65076
[39] S.-Y. Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model, Numer. Methods Partial Differential Equations, 29 (2013), pp. 1749–1777. · Zbl 1274.74455
[40] O. C. Zienkiewicz and T. Shiomi, Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution, Internat. J. Numer. Anal. Methods Geomech., 8 (1984), pp. 71–96. · Zbl 0526.73099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.