zbMATH — the first resource for mathematics

Synchronization of reinforced stochastic processes with a network-based interaction. (English) Zbl 1382.60046
Summary: Randomly evolving systems composed by elements which interact among each other have always been of great interest in several scientific fields. This work deals with the synchronization phenomenon that could be roughly defined as the tendency of different components to adopt a common behavior. We continue the study of a model of interacting stochastic processes with reinforcement that recently has been introduced in [I. Crimaldi et al., “Synchronization and functional central limit theorems for interacting reinforced random walks”, Preprint, arXiv:1602.06217]. Generally speaking, by reinforcement we mean any mechanism for which the probability that a given event occurs has an increasing dependence on the number of times that events of the same type occurred in the past. The particularity of systems of such interacting stochastic processes is that synchronization is induced along time by the reinforcement mechanism itself and does not require a large-scale limit. We focus on the relationship between the topology of the network of the interactions and the long-time synchronization phenomenon. After proving the almost sure synchronization, we provide some CLTs in the sense of stable convergence that establish the convergence rates and the asymptotic distributions for both convergence to the common limit and synchronization. The obtained results lead to the construction of asymptotic confidence intervals for the limit random variable and of statistical tests to make inference on the topology of the network.

60F05 Central limit and other weak theorems
60F15 Strong limit theorems
60K35 Interacting random processes; statistical mechanics type models; percolation theory
62P35 Applications of statistics to physics
91D30 Social networks; opinion dynamics
Full Text: DOI Euclid arXiv
[1] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks.Rev. Modern Phys.7447-97.
[2] Aletti, G. and Ghiglietti, A. (2017). Interacting generalized Friedman’s urn systems.Stochastic Process. Appl.1272650-2678. · Zbl 1367.60119
[3] Aletti, G., Ghiglietti, A. and Paganoni, A. M. (2013). Randomly reinforced urn designs with prespecified allocations.J. Appl. Probab.50486-498. · Zbl 1301.62072
[4] Aletti, G., Ghiglietti, A. and Vidyashankar, A. N. (2017). Dynamics of an adaptive randomly reinforced urn.Bernoulli. To appear. · Zbl 1367.60119
[5] Aletti, G., May, C. and Secchi, P. (2009). A central limit theorem, and related results, for a two-color randomly reinforced urn.Adv. in Appl. Probab.41829-844. · Zbl 1176.60013
[6] Aoudia, D. A. and Perron, F. (2012). A new randomized Pólya urn model.Appl. Math.32118-2122.
[7] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. and Zhou, C. (2008). Synchronization in complex networks.Phys. Rep.46993-153.
[8] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.Science286509-512. · Zbl 1226.05223
[9] Benaïm, M., Benjamini, I., Chen, J. and Lima, Y. (2015). A generalized Pólya’s urn with graph based interactions.Random Structures Algorithms46614-634.
[10] Berti, P., Crimaldi, I., Pratelli, L. and Rigo, P. (2011). A central limit theorem and its applications to multicolor randomly reinforced urns.J. Appl. Probab.48527-546. · Zbl 1225.60038
[11] Berti, P., Crimaldi, I., Pratelli, L. and Rigo, P. (2016). Asymptotics for randomly reinforced urns with random barriers.J. Appl. Probab.531206-1220. · Zbl 1358.60005
[12] Caldarelli, G., Chessa, A., Crimaldi, I. and Pammolli, F. (2013). Weighted networks as randomly reinforced urn processes.Phys. Rev. E87020106(R).
[13] Chen, J. and Lucas, C. (2014). A generalized Pólya’s urn with graph based interactions: Convergence at linearity.Electron. Commun. Probab.19no. 67, 13.
[14] Chen, M.-R. and Kuba, M. (2013). On generalized Pólya urn models.J. Appl. Probab.501169-1186. · Zbl 1290.60009
[15] Cirillo, P., Gallegati, M. and Hüsler, J. (2012). A Pólya lattice model to study leverage dynamics and contagious financial fragility.Adv. Complex Syst.151250069, 26.
[16] Collevecchio, A., Cotar, C. and LiCalzi, M. (2013). On a preferential attachment and generalized Pólya’s urn model.Ann. Appl. Probab.231219-1253. · Zbl 1266.05150
[17] Contucci, P. and Ghirlanda, S. (2007). Modeling society with statistical mechanics: An application to cultural contact and immigration.Qual. Quant.41569-578.
[18] Crimaldi, I. (2009). An almost sure conditional convergence result and an application to a generalized Pólya urn.Int. Math. Forum41139-1156. · Zbl 1196.60046
[19] Crimaldi, I. (2016). Central limit theorems for a hypergeometric randomly reinforced urn.J. Appl. Probab.53899-913. · Zbl 1351.60024
[20] Crimaldi, I. (2016).Introduzione Alla Nozione di Convergenza Stabile e sue Varianti(Introduction to the Notion of Stable Convergence and Its Variants)57. Unione Matematica Italiana, Monograf s.r.l., Bologna, Italy. (In Italian.)
[21] Crimaldi, I., Dai Pra, P., Louis, P. Y. and Minelli, I. G. (2016). Synchronization and functional central limit theorems for interacting reinforced random walks. Preprint. Available atarXiv:1602.06217. · Zbl 1404.60044
[22] Crimaldi, I., Dai Pra, P. and Minelli, I. G. (2016). Fluctuation theorems for synchronization of interacting Pólya’s urns.Stochastic Process. Appl.126930-947. · Zbl 1333.60201
[23] Crimaldi, I., Letta, G. and Pratelli, L. (2007). A strong form of stable convergence. InSéminaire de Probabilités XL. Lecture Notes in Math.1899203-225. Springer, Berlin. · Zbl 1129.60030
[24] Crimaldi, I. and Pratelli, L. (2005). Convergence results for multivariate martingales.Stochastic Process. Appl.115571-577. · Zbl 1070.60040
[25] Dai Pra, P., Louis, P.-Y. and Minelli, I. G. (2014). Synchronization via interacting reinforcement.J. Appl. Probab.51556-568. · Zbl 1305.60105
[26] Eggenberger, F. and Pólya, G. (1923). Uber die Statistik verketteter Vorgänge.Z. Angewandte Math. Mech.3279-289.
[27] Ghiglietti, A. and Paganoni, A. M. (2014). Statistical properties of two-color randomly reinforced urn design targeting fixed allocations.Electron. J. Stat.8708-737. · Zbl 1348.62254
[28] Ghiglietti, A., Vidyashankar, A. N. and Rosenberger, W. F. (2017). Central limit theorem for an adaptive randomly reinforced urn model.Ann. Appl. Probab.To appear. · Zbl 1379.60025
[29] Hall, P. and Heyde, C. C. (1980).Martingale Limit Theory and Its Application:Probability and Mathematical Statistics. Academic Press, New York. · Zbl 0462.60045
[30] Horn, R. A. and Johnson, C. R. (2013).Matrix Analysis, 2nd ed. Cambridge Univ. Press, Cambridge. · Zbl 1267.15001
[31] Laruelle, S. and Pagès, G. (2013). Randomized urn models revisited using stochastic approximation.Ann. Appl. Probab.231409-1436. · Zbl 1429.62360
[32] Launay, M. (2011). Interacting urn models. Preprint. Available atarXiv:1101.1410.
[33] Launay, M. and Limic, V. (2012). Generalized interacting urn models. Preprint. Available atarXiv:1207.5635.
[34] Lima, Y. (2016). Graph-based Pólya’s urn: Completion of the linear case.Stoch. Dyn.161660007, 13. · Zbl 1335.60185
[35] Linero, A. and Rosalsky, A. (2013). On the Toeplitz lemma, convergence in probability, and mean convergence.Stoch. Anal. Appl.31684-694. · Zbl 1273.60029
[36] Mahmoud, H. M. (2009).Pólya Urn Models. CRC Press, Boca Raton, FL.
[37] Marsili, M. and Valleriani, A. (1998). Self organization of interacting Pólya urns.Eur. Phys. J. B3417-420.
[38] Newman, M. E. J. (2010).Networks:An Introduction. Oxford Univ. Press, Oxford.
[39] Norris, J. R. (1998).Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics2. Cambridge Univ. Press, Cambridge.
[40] Paganoni, A. M. and Secchi, P. (2004). Interacting reinforced-urn systems.Adv. in Appl. Probab.36791-804. · Zbl 1062.60031
[41] Pemantle, R. (2007). A survey of random processes with reinforcement.Probab. Surv.41-79. · Zbl 1189.60138
[42] Robbins, H. and Siegmund, D. (1971). A convergence theorem for non negative almost supermartingales and some applications. InOptimizing methods in statistics(Proc. Sympos.,Ohio State Univ.,Columbus,Ohio, 1971) 233-257. Academic Press, New York. · Zbl 0286.60025
[43] Sahasrabudhe, N. (2016). Synchronization and fluctuation theorems for interacting Friedman urns.J. Appl. Probab.531221-1239. · Zbl 1356.60173
[44] van der Hofstad, R. (2009). Random Graphs and Complex Networks. Available athttps://www.win.tue.nl/ rhofstad/NotesRGCN.html.
[45] Zhang, L. · Zbl 1317.60040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.