×

zbMATH — the first resource for mathematics

Scaled and squared subdiagonal Padé approximation for the matrix exponential. (English) Zbl 1382.65125

MSC:
65F60 Numerical computation of matrix exponential and similar matrix functions
15A16 Matrix exponential and similar functions of matrices
15A23 Factorization of matrices
65F30 Other matrix algorithms (MSC2010)
41A20 Approximation by rational functions
41A21 Padé approximation
65G50 Roundoff error
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. H. Al-Mohy and N. J. Higham, Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1639–1657. · Zbl 1180.65049
[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989. · Zbl 1194.15021
[3] A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), pp. 488–511. · Zbl 1234.65028
[4] M. Aprahamian and N. J. Higham, The matrix unwinding function, with an application to computing the matrix exponential, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 88–109. · Zbl 1300.65024
[5] M. Arioli, B. Codenotti, and C. Fassino, The Padé method for computing the matrix exponential, Linear Algebra Appl., 240 (1996), pp. 111–130. · Zbl 0851.65024
[6] B. Beckermann and S. Güttel, Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions, Numer. Math., 121 (2012), pp. 205–236. · Zbl 1271.65059
[7] M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MATLAB, MIMS EPrint 2014.56, Manchester Institute for Mathematical Sciences, The University of Manchester, Manchester, UK, 2014; available online from http://guettel.com/rktoolbox/.
[8] R.-U. Börner, O. G. Ernst, and S. Güttel, Three-dimensional transient electromagnetic modeling using rational Krylov methods, Geophys. J. Int., 202 (2015), pp. 2025–2043.
[9] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 244 (2007), pp. 668–690. · Zbl 1116.47004
[10] L. Dieci and A. Papini, Padé approximation for the exponential of a block triangular matrix, Linear Algebra Appl., 308 (2000), pp. 183–202. · Zbl 0958.65050
[11] L. Dieci and A. Papini, Conditioning of the exponential of a block triangular matrix, Numer. Algorithms, 28 (2001), pp. 137–150. · Zbl 0992.65042
[12] H. C. Elman and M. Wu, Lyapunov inverse iteration for computing a few rightmost eigenvalues of large generalized eigenvalue problems, SIAM J. Matrix. Anal. Appl., 34 (2013), pp. 1685–1707. · Zbl 1425.65053
[13] W. Fair and Y. L. Luke, Padé approximations to the operator exponential, Numer. Math., 14 (1970), pp. 379–382. · Zbl 0181.16702
[14] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1236–1264. · Zbl 0757.65101
[15] V. Grimm, Resolvent Krylov subspace approximation to operator functions, BIT, 52 (2012), pp. 639–659. · Zbl 1258.65052
[16] S. Güttel, Rational Krylov Methods for Operator Functions, Ph.D. thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2010.
[17] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection, GAMM-Mitt., 36 (2013), pp. 8–31. · Zbl 1292.65043
[18] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991. · Zbl 0729.65051
[19] N. J. Higham, The Matrix Computation Toolbox, http://www.ma.man.ac.uk/ higham/mctoolbox.
[20] N. J. Higham, The Matrix Function Toolbox, http://www.ma.man.ac.uk/ higham/mftoolbox.
[21] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002. · Zbl 1011.65010
[22] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008. · Zbl 1167.15001
[23] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM Rev., 51 (2009), pp. 747–764. · Zbl 1178.65040
[24] C. S. Kenney and A. J. Laub, A Schur–Fréchet algorithm for computing the logarithm and exponential of a matrix, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 640–663. · Zbl 0913.65036
[25] L. A. Knizhnerman, Adaptation of the Lanczos and Arnoldi methods to the spectrum, or why the two Krylov subspace methods are powerful, Chebyshevski\u\i Sb., 3 (2002), pp. 141–164. · Zbl 1106.65030
[26] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems, IMA J. Numer. Anal., 16 (1996), pp. 297–346. · Zbl 0856.65033
[27] C. Moler, A Balancing Act for the Matrix Exponential, http://blogs.mathworks.com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/ (2012).
[28] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49. · Zbl 1030.65029
[29] I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44 (2004), pp. 595–615. · Zbl 1075.65062
[30] M. Mori, Approximation of exponential function of a matrix by continued fraction expansion, Publ. Res. Inst. Math. Sci., 10 (1974), pp. 257–269. · Zbl 0297.65015
[31] K. C. Ng, Contributions to the Computation of the Matrix Exponential, Ph.D. thesis, University of California, Berkeley, CA, 1984.
[32] P. Novati, Using the restricted-denominator rational Arnoldi method for exponential integrators, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1537–1558. · Zbl 1247.65093
[33] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, in Recent Advances in Iterative Methods, IMA Vol. Math. Appl. 60, Springer, New York, 1994, pp. 149–164. · Zbl 0803.65045
[34] T. Schmelzer and L. N. Trefethen, Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals, Electron. Trans. Numer. Anal., 29 (2007), pp. 1–18. · Zbl 1186.65092
[35] D. Skoogh, A parallel rational Krylov algorithm for eigenvalue computations, in Applied Parallel Computing Large Scale Scientific and Industrial Problems, Lecture Notes in Comput. Sci. 1541, B. K\aagström, J. Dongarra, E. Elmroth, and J. Wasniewski, eds., Springer, Berlin, Heidelberg, 1998, pp. 521–526.
[36] R. M. Smith and A. G. Hutton, The numerical treatment of advection: A performance comparison of current methods, Numer. Heat Transfer, 5 (1982), pp. 439–461.
[37] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, 2013. · Zbl 1264.41001
[38] L. N. Trefethen and M. H. Gutknecht, The Carathéodory–Fejér method for real rational approximation, SIAM J. Numer. Anal., 20 (1983), pp. 420–436. · Zbl 0526.41022
[39] L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT, 46 (2006), pp. 653–670. · Zbl 1103.65030
[40] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential, SIAM J. Sci. Comput., 27 (2006), pp. 1438–1457. · Zbl 1105.65051
[41] C. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14 (1977), pp. 971–981. · Zbl 0368.65006
[42] H. Van Rossum, On the poles of Padé approximations to \(e^z\), Nieuw Arch. Wisk. (3), 19 (1971), pp. 37–45. · Zbl 0207.07202
[43] R. S. Varga, Matrix Iterative Analysis, Springer Ser. Comput. Math. 27, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 2009. · Zbl 1216.65042
[44] G. Wanner, E. Hairer, and S. Nørsett, Order stars and stability theorems, BIT, 18 (1978), pp. 475–489. · Zbl 0444.65039
[45] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM J. Numer. Anal., 14 (1977), pp. 600–610. · Zbl 0363.65031
[46] J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp., 76 (2007), pp. 1341–1356. · Zbl 1113.65119
[47] M. Zaslavsky, V. Druskin, and L. Knizhnerman, Solution of 3D time-domain electromagnetic problems using optimal subspace projection, Geophysics, 76 (2011), pp. F339–F351.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.