×

zbMATH — the first resource for mathematics

Stable cell-centered finite volume discretization for Biot equations. (English) Zbl 1382.76187

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] I. Aavatsmark, An introduction to the multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6 (2002), pp. 405–432, http://dx.doi.org/10.1023/A:1021291114475 doi:10.1023/A:1021291114475. · Zbl 1094.76550
[2] I. Aavatsmark, T. Barkve, Ø. Bø e, and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys., 127 (1996), pp. 2–14, http://dx.doi.org/10.1006/jcph.1996.0154 doi:10.1006/jcph.1996.0154. · Zbl 0859.76048
[3] L. Agelas, C. Guichard, and R. Masson, Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes, Int. J. Finite Vol., 7 (2010), no. 2. · Zbl 1152.65107
[4] L. Agelas and R. Masson, Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, 246 (2008), pp. 1007–1012, http://dx.doi.org/10.1016/j.crma.2008.07.015 doi:10.1016/j.crma.2008.07.015. · Zbl 1152.65107
[5] T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal., 42 (2004), pp. 576–598, http://dx.doi.org/10.1137/S0036142902406636 doi:10.1137/S0036142902406636. · Zbl 1078.65092
[6] D. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 92 (2002), pp. 401–419, http://dx.doi.org/10.1007/s002110100348 doi:10.1007/s002110100348. · Zbl 1090.74051
[7] I. Babuska, Error bounds for finite element method, Numer. Math., 16 (1971), pp. 322–333, http://dx.doi.org/10.1007/BF02165003 doi:10.1007/BF02165003. · Zbl 0214.42001
[8] S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228 (2009), pp. 7986–8014, http://dx.doi.org/10.1016/j.jcp.2009.07.019 doi:10.1016/j.jcp.2009.07.019. · Zbl 1391.74234
[9] M. A. Biot, General theory of three dimensional consolidation, J. Appl. Phys., 12 (1941), pp. 155–164, http://dx.doi.org/10.1063/1.1712886 doi:10.1063/1.1712886. · JFM 67.0837.01
[10] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129–151. · Zbl 0338.90047
[11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[12] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes problem, in Efficient Solutions of Elliptic Systems, Notes Numer. Fluid Mech. 10, Friedrich Vieweg, Braunschweig, 1984, pp. 11–19.
[13] G. T. Eigestad and R. Klausen, On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability, Numer. Methods Partial Differential Equations, 21 (2005), pp. 1079–1098, http://dx.doi.org/10.1002/num.20079 doi:10.1002/num.20079. · Zbl 1089.76037
[14] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, Elsevier, Amsterdam, 2006, pp. 713–1020, http://dx.doi.org/10.1016/S1570-8659(00)07005-8 doi:10.1016/S1570-8659(00)07005-8.
[15] L. P. Franca and R. Stenberg, Error analysis of some Galerkin least squares methods for the elasticity equations, SIAM J. Numer. Anal., 28 (1991), pp. 1680–1697, http://dx.doi.org/10.1137/0728084 doi:10.1137/0728084. · Zbl 0759.73055
[16] F. J. Gaspar, F. J. Lisbona, and C. W. Oosterlee, A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods, Comput. Vis. Sci., 11 (2008), pp. 67–76, http://dx.doi.org/10.1007/s00791-007-0061-1 doi:10.1007/s00791-007-0061-1.
[17] F. J. Gaspar, F. J. Lisbona, and P. N. Vabishchevich, Staggered grid discretizations for the quasi-static Biot’s consolidation problem, Appl. Numer. Math., 56 (2006), pp. 888–898, http://dx.doi.org/10.1016/j.apnum.2005.07.002 doi:10.1016/j.apnum.2005.07.002. · Zbl 1091.76047
[18] J. B. Haga, H. Osnes, and H. P. Langtangen, On the causes of pressure oscillations in low-permeable and low-compressible porous media, Internat. J. Numer. Anal. Methods Geomech., 36 (2012), pp. 1507–1522, http://dx.doi.org/10.1002/nag.1062 doi:10.1002/nag.1062.
[19] T. J. R. Hughes, G. R. Feijoo, L. Mazzei, and J. B. Quincy, The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 3–24, http://dx.doi.org/10.1016/S0045-7825(98)00079-6 doi:10.1016/S0045-7825(98)00079-6. · Zbl 1017.65525
[20] H. Jasak and H. G. Weller, Application of the finite volume method and unstructured meshes to linear elasticity, Internat. J. Numer. Methods Engrg., 48 (2000), pp. 267–287, doi:10.1002/(SICI)1097-0207(20000520)48:2 267::AID-NME884 3.0.CO;2-Q. · Zbl 0990.74077
[21] R. Klausen and R. Winther, Robust convergence of multi point flux approximation on rough grids, Numer. Math., 104 (2006), pp. 317–337, http://dx.doi.org/10.1007/s00211-006-0023-4 doi:10.1007/s00211-006-0023-4. · Zbl 1102.76036
[22] R. A. Klausen and A. F. Stephansen, Convergence of multi-point flux approximation on general grids and media, Int. J. Numer. Anal. Model., 9 (2012), pp. 584–606. · Zbl 1276.76047
[23] R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002, http://dx.doi.org/10.1017/CBO9780511791253 doi:10.1017/CBO9780511791253. · Zbl 1010.65040
[24] R. W. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley and Sons, Chichester, UK, 1998, doi:10.1002/(SICI)1099-1484(200001)5:1 85::AID-CFM94 3.0.CO;2-8. · Zbl 0935.74004
[25] J. C. Nagtegaal, D. M. Parks, and J. R. Rice, On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4 (1974), pp. 153–177, http://dx.doi.org/10.1016/0045-7825(74)90032-2 doi:10.1016/0045-7825(74)90032-2. · Zbl 0284.73048
[26] J. M. Nordbotten, Adaptive variational multiscale methods for multiphase flow in porous media, Multiscale Model. Simul., 7 (2009), pp. 1455–1473, http://dx.doi.org/10.1137/080724745 doi:10.1137/080724745. · Zbl 1172.76041
[27] J. M. Nordbotten, Cell-centered finite volume discretizations for deformable porous media, Internat. J. Numer. Methods Engrg., 100 (2014), pp. 399–418, http://dx.doi.org/10.1002/nme.4734 doi:10.1002/nme.4734. · Zbl 1352.76072
[28] J. M. Nordbotten, Finite volume hydro-mechanical simulation of porous media, Water Resour. Res., 50 (2014), pp. 4379–4394, http://dx.doi.org/10.1002/2013WR015179 doi:10.1002/2013WR015179.
[29] J. M. Nordbotten, Convergence of a cell-centered finite volume discretization for linear elasticity, SIAM J. Numer. Anal., 53 (2015), pp. 2605–2625, http://dx.doi.org/10.1137/140972792 doi:10.1137/140972792. · Zbl 1330.74171
[30] J. M. Nordbotten, I. Aavatsmark, and G. Eigestad, Monotonicity of control volume methods, Numer. Math., 106 (2007), pp. 255–288, http://dx.doi.org/10.1007/s00211-006-0060-z doi:10.1007/s00211-006-0060-z. · Zbl 1215.76090
[31] J. M. Nordbotten and M. A. Celia, Geological Storage of CO\(_2\): Modeling Approaches for Large-Scale Simulation, Wiley, New York, 2011, ISBN: 978-1-118-13707-9.
[32] T. F. Russell and M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, in Mathematics of Reservoir Simulation, R. E. Ewing, ed., SIAM, Philadelphia, 1983, pp. 35–106, http://dx.doi.org/10.1137/1.9781611971071.ch2 doi:10.1137/1.9781611971071.ch2.
[33] J. Rutquist, D. W. Vasco, and L. Myer, Coupled reservoir-geomechanical analysis of CO\(_2\) injection and ground deformations at In Salah, Int. J. Greenh. Gas Control, 4 (2010), pp. 225–230, http://dx.doi.org/10.1016/j.ijggc.2009.10.017 doi:10.1016/j.ijggc.2009.10.017.
[34] R. Temam and A. Miramville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, Cambridge, UK, 2000, http://dx.doi.org/10.1017/CBO9780511755422 doi:10.1017/CBO9780511755422.
[35] J. W. Tester, The Future of Geothermal Energy, Report INL/EXT-06-1174, MIT, Cambridge, MA, 2006.
[36] M. Wheeler, G. Xue, and I. Yotov, A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra, Numer. Math., 121 (2012), pp. 165–204, http://dx.doi.org/10.1007/s00211-011-0427-7 doi:10.1007/s00211-011-0427-7. · Zbl 1277.65100
[37] M. Wheeler, G. Xue, and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity, Comput. Geosci., 18 (2014), pp. 57–75. · Zbl 1395.65093
[38] M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44 (2006), pp. 2082–2106, http://dx.doi.org/10.1137/050638473 doi:10.1137/050638473. · Zbl 1121.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.