×

A new method for isolating turbulent states in transitional stratified plane Couette flow. (English) Zbl 1383.76267

Summary: We present a new adaptive control strategy to isolate and stabilize turbulent states in transitional, stably stratified plane Couette flow in which the gravitational acceleration (non-dimensionalized as the bulk Richardson number \(Ri\)) is adjusted in time to maintain the turbulent kinetic energy (TKE) of the flow. We demonstrate that applying this method at various stages of decaying stratified turbulence halts the decay process and allows a succession of intermediate turbulent states of decreasing energy to be isolated and stabilized. Once the energy of the initial flow becomes small enough, we identify a single minimal turbulent spot, and lower-energy states decay to laminar flow. Interestingly, the turbulent states which emerge from this process have very similar time-averaged \(Ri\), but TKE levels different by an order of magnitude. The more energetic states consist of several turbulent spots, each qualitatively similar to the minimal turbulent spot. This suggests that the minimal turbulent spot may well be the lowest-energy turbulent state which forms a basic building block of stratified plane Couette flow. The fact that a minimal spot of turbulence can be stabilized, so that it neither decays nor grows, opens up exciting opportunities for further study of spatiotemporally intermittent stratified turbulence.

MSC:

76F45 Stratification effects in turbulence
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alavyoon, F.; Henningson, D. S.; Alfredsson, P. H., Turbulent spots in plane Poiseuille flow – flow visualization, Phys. Fluids, 29, 4, 1328-1331, (1986) · doi:10.1063/1.865884
[2] Barkley, D.; Tuckerman, L. S., Computational study of turbulent laminar patterns in Couette flow, Phys. Rev. Lett., 94, 1, (2005) · doi:10.1103/PhysRevLett.94.014502
[3] Bottin, S.; Dauchot, O.; Daviaud, F., Intermittency in a locally forced plane Couette flow, Phys. Rev. Lett., 79, 22, 4377-4380, (1997) · doi:10.1103/PhysRevLett.79.4377
[4] Brethouwer, G.; Duguet, Y.; Schlatter, P., Turbulent – laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces, J. Fluid Mech., 704, 137-172, (2012) · Zbl 1246.76028 · doi:10.1017/jfm.2012.224
[5] Carlson, D. R.; Widnall, S. E.; Peeters, M. F., A flow-visualization study of transition in plane Poiseuille flow, J. Fluid Mech., 121, 487-505, (1982) · doi:10.1017/S0022112082002006
[6] Clever, R. M.; Busse, F. H.; Kelly, R. E., Instabilities of longitudinal convection rolls in Couette flow, Z. Angew. Math. Phys., 28, 5, 771-783, (1977) · Zbl 0386.76031 · doi:10.1007/BF01603815
[7] Coles, D., Transition in circular Couette flow, J. Fluid Mech., 21, 3, 385-425, (1965) · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[8] Dauchot, O.; Daviaud, F., Finite amplitude perturbation and spots growth mechanism in plane Couette flow, Phys. Fluids, 7, 2, 335-343, (1995) · doi:10.1063/1.868631
[9] Deusebio, E.; Brethouwer, G.; Schlatter, P.; Lindborg, E., A numerical study of the unstratified and stratified Ekman layer, J. Fluid Mech., 755, 672-704, (2014) · doi:10.1017/jfm.2014.318
[10] Deusebio, E.; Caulfield, C. P.; Taylor, J. R., The intermittency boundary in stratified plane Couette flow, J. Fluid Mech., 781, 298-329, (2015) · Zbl 1359.76147 · doi:10.1017/jfm.2015.497
[11] Duguet, Y.; Schlatter, P., Oblique laminar-turbulent interfaces in plane shear flows, Phys. Rev. Lett., 110, 3, (2013) · doi:10.1103/PhysRevLett.110.034502
[12] Duguet, Y.; Schlatter, P.; Henningson, D. S., Formation of turbulent patterns near the onset of transition in plane Couette flow, J. Fluid Mech., 650, 119-129, (2010) · Zbl 1189.76254 · doi:10.1017/S0022112010000297
[13] Emmons, H. W., The laminar-turbulent transition in a boundary layer - Part I, J. Aero. Sci., 18, 7, 490-498, (1951) · Zbl 0043.19109
[14] Flores, O.; Riley, J. J., Analysis of turbulence collapse in stably stratified surface layers using direct numerical simulation, Boundary-Layer Meteorol., 129, 2, 241-259, (2010)
[15] Fukudome, K., Iida, O. & Nagano, Y.2009The mechanism of energy transfer in turbulent Poiseuille flow at very low Reynolds number. In Proceedings of 6th International Symposium on Turbulence and Shear Flow Phenomena, pp. 471-476. Begel House.
[16] García-Villalba, M.; Del Álamo, J. C., Turbulence modification by stable stratification in channel flow, Phys. Fluids, 23, 4, (2011)
[17] Henningson, D.; Spalart, P.; Kim, J., Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow, Phys. Fluids, 30, 10, 2914-2917, (1987) · doi:10.1063/1.866067
[18] Itano, T.; Toh, S., The dynamics of bursting process in wall turbulence, J. Phys. Soc. Japan, 70, 703-716, (2001) · doi:10.1143/JPSJ.70.703
[19] Kelly, R. E., The onset and development of Rayleigh-Bénard convection in shear flows: a review, Physico-Chem. Hydrodyn., 1, 65-79, (1977)
[20] Klingmann, B. G. B.; Alfredsson, P. H., Turbulent spots in plane Poiseuille flow – measurements of the velocity field, Phys. Fluids A, 2, 12, 2183-2195, (1990) · doi:10.1063/1.857805
[21] Lagha, M.; Manneville, P., Modeling of plane Couette flow. I: large scale flow around turbulent spots, Phys. Fluids, 19, 9, (2007) · Zbl 1182.76422
[22] Lundbladh, A.; Johansson, A. V., Direct simulation of turbulent spots in plane Couette flow, J. Fluid Mech., 229, 499-516, (1991) · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[23] Mahrt, L., Stratified atmospheric boundary layers, Boundary-Layer Meteorol., 90, 3, 375-396, (1999) · doi:10.1023/A:1001765727956
[24] Manneville, P., On the decay of turbulence in plane Couette flow, Fluid Dyn. Res., 43, 6, (2011) · Zbl 1421.76108 · doi:10.1088/0169-5983/43/6/065501
[25] Manneville, P., On the growth of laminar – turbulent patterns in plane Couette flow, Fluid Dyn. Res., 44, 3, (2012) · Zbl 1309.76092 · doi:10.1088/0169-5983/44/3/031412
[26] Philip, J.; Manneville, P., From temporal to spatiotemporal dynamics in transitional plane Couette flow, Phys. Rev. E, 83, 3, (2011)
[27] Prigent, A.; Grégoire, G.; Chaté, H.; Dauchot, O.; Van Saarloos, W., Large-scale finite-wavelength modulation within turbulent shear flows, Phys. Rev. Lett., 89, 1, (2002) · doi:10.1103/PhysRevLett.89.014501
[28] Schumacher, J.; Eckhardt, B., Evolution of turbulent spots in a parallel shear flow, Phys. Rev. E, 63, 4, (2001) · doi:10.1103/PhysRevE.63.046307
[29] Skufca, J. D.; Yorke, J. A.; Eckhardt, B., Edge of chaos in parallel shear flow, Phys. Rev. Lett., 96, (2006) · doi:10.1103/PhysRevLett.96.174101
[30] Tillmark, N.; Alfredsson, P. H., Experiments on transition in plane Couette flow, J. Fluid Mech., 235, 89-102, (1992) · doi:10.1017/S0022112092001046
[31] Tsukahara, T., Seki, Y., Kawamura, H. & Tochio, D.2005DNS of turbulent channel flow at very low Reynolds numbers. In Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena, pp. 935-940. Begel House.
[32] Van Atta, C., Exploratory measurements in spiral turbulence, J. Fluid Mech., 25, 3, 495-512, (1966) · doi:10.1017/S0022112066000211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.