×

Layer formation in sedimentary fingering convection. (English) Zbl 1383.76506


MSC:

76T20 Suspensions
76R10 Free convection
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Alldredge, A. L.; Cohen, Y., Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235, 4789, 689-691, (1987)
[2] Alsinan, A.; Meiburg, E.; Garaud, P., A settling-driven instability in two-component, stably stratified fluids, J. Fluid Mech., 816, 243-267, (2017) · Zbl 1383.76074
[3] Baines, P. G.; Gill, A. E., On thermohaline convection with linear gradients, J. Fluid Mech., 37, 289-306, (1969)
[4] Brown, J. M.; Garaud, P.; Stellmach, S., Chemical transport and spontaneous layer formation in fingering convection in astrophysics, Astrophys. J., 768, 34, (2013)
[5] Burns, P.; Meiburg, E., Sediment-laden fresh water above salt water: linear stability analysis, J. Fluid Mech., 691, 279-314, (2012) · Zbl 1241.76223
[6] Burns, P.; Meiburg, E., Sediment-laden fresh water above salt water: nonlinear simulations, J. Fluid Mech., 762, 156-195, (2015) · Zbl 1241.76223
[7] Carazzo, G.; Jellinek, A. M., Particle sedimentation and diffusive convection in volcanic ash-clouds, J. Geophys. Res., 118, 4, 1420-1437, (2013)
[8] Garaud, P.2013Double-diffusive convection. In EAS Publications Series (ed. Alecian, G., Lebreton, Y., Richard, O. & Vauclair, G.), , vol. 63, pp. 285-295.
[9] Garaud, P.; Brummell, N., 2D or Not 2D: the effect of dimensionality on the dynamics of fingering convection at low Prandtl number, Astrophys. J., 815, 42, (2015)
[10] Green, T., The importance of double diffusion to the settling of suspended material, Sedimentology, 34, 2, 319-331, (1987)
[11] Ham, J. M.; Homsy, G. M., Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions, Intl J. Multiphase Flow, 14, 5, 533-546, (1988)
[12] Holyer, J. Y., On the collective instability of salt fingers, J. Fluid Mech., 110, 195-207, (1981) · Zbl 0484.76057
[13] Houk, D.; Green, T., Descent rates of suspension fingers, Deep Sea Res., 20, 757-761, (1973)
[14] Hoyal, D. C. J. D.; Bursik, M. I.; Atkinson, J. F., Settling-driven convection: a mechanism of sedimentation from stratified fluids, J. Geophys. Res., 104, 7953-7966, (1999)
[15] Hoyal, D. C. J. D.; Bursik, M. I.; Atkinson, J. F., The influence of diffusive convection on sedimentation from buoyant plumes, Mar. Geol., 159, 14, 205-220, (1999)
[16] Krishnamurti, R., Double-diffusive transport in laboratory thermohaline staircases, J. Fluid Mech., 483, 287-314, (2003) · Zbl 1032.76505
[17] Krishnamurti, R., Heat, salt and momentum transport in a laboratory thermohaline staircase, J. Fluid Mech., 638, 491-506, (2009) · Zbl 1183.76029
[18] Kunze, E., A review of oceanic salt-fingering theory, Prog. Oceanogr., 56, 3-4, 399-417, (2003)
[19] Lambert, R. B.; Demenkow, J. W., On the vertical transport due to fingers in double diffusive convection, J. Fluid Mech., 54, 627-640, (1972)
[20] Linden, P. F., On the structure of salt fingers, Deep Sea Res., 20, 325-340, (1973)
[21] Maxworthy, T., The dynamics of sedimenting surface gravity currents, J. Fluid Mech., 392, 27-44, (1999) · Zbl 0938.76517
[22] Necker, F.; Härtel, C.; Kleiser, L.; Meiburg, E., High-resolution simulations of particle-driven gravity currents, Intl J. Multiphase Flow, 28, 2, 279-300, (2002) · Zbl 1136.76590
[23] Nicolai, H.; Herzhaft, B.; Hinch, E. J.; Oger, L.; Guazzelli, E., Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-brownian spheres, Phys. Fluids, 7, 1, 12-23, (1995)
[24] Parsons, J. D.; Bush, J. W. M.; Syvitski, J. P. M., Hyperpycnal plume formation from riverine outflows with small sediment concentrations, Sedimentology, 48, 465-478, (2001)
[25] Radko, T., A mechanism for layer formation in a double-diffusive fluid, J. Fluid Mech., 497, 365-380, (2003) · Zbl 1065.76086
[26] Radko, T., Double-Diffusive Convection, (2013), Cambridge University Press · Zbl 1301.76001
[27] Radko, T.; Smith, D. P., Equilibrium transport in double-diffusive convection, J. Fluid Mech., 692, 5-27, (2012) · Zbl 1250.76076
[28] Rosenblum, E.; Garaud, P.; Traxler, A.; Stellmach, S., Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory, Astrophys. J., 731, 66, (2011)
[29] Sánchez, X.; Roget, E., Microstructure measurements and heat flux calculations of a triple-diffusive process in a lake within the diffusive layer convection regime, J. Geophys. Res., 112, C2, (2007)
[30] Scheu, K. R.; Fong, D. A.; Monismith, S. G.; Fringer, O. B., Sediment transport dynamics near a river inflow in a large alpine lake, Limnol. Oceanogr., 60, 4, 1195-1211, (2015)
[31] Schmitt, R. W., The growth rate of super-critical salt fingers, Deep Sea Res., 26A, 23-40, (1979)
[32] Schmitt, R. W., Flux measurements on salt fingers at an interface, J. Mar. Res., 37, 3, 419-436, (1979)
[33] Schmitt, R. W., Double diffusion in oceanography, Annu. Rev. Fluid Mech., 26, 1, 255-285, (1994)
[34] Schmitt, R. W., The salt finger experiments of Jevons (1857) and Rayleigh (1880), J. Phys. Oceanogr., 25, 1, 8-17, (1995)
[35] Schmitt, R. W., Observational and laboratory insights into salt finger convection, Prog. Oceanogr., 56, 419-433, (2003)
[36] Schmitt, R. W.; Ledwell, J. R.; Montgomery, E. T.; Polzin, K. L.; Toole, J. M., Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical atlantic, Science, 308, 5722, 685-688, (2005)
[37] Schmitt, R. W.; Perkins, H.; Boyd, J. D.; Stalcup, M. C., C-salt: an investigation of the thermohaline staircase in the western tropical north atlantic, Deep Sea Res., 34, 10, 1655-1665, (1987)
[38] Segre, P. N.; Liu, F.; Umbanhowar, P.; Weitz, D. A., An effective gravitational temperature for sedimentation, Nature, 409, 6820, 594-597, (2001)
[39] Stellmach, S.; Traxler, A.; Garaud, P.; Brummell, N.; Radko, T., Dynamics of fingering convection. Part 2. The formation of thermohaline staircases, J. Fluid Mech., 677, 554-571, (2011) · Zbl 1241.76228
[40] Stern, M. E., The salt fountain and thermohaline convection, Tellus, 12, 2, 172-175, (1960)
[41] Stern, M. E., Collective instability of salt fingers, J. Fluid Mech., 35, 209-218, (1969) · Zbl 0164.28802
[42] Stern, M. E.; Radko, T.; Simeonov, J., Salt fingers in an unbounded thermocline, J. Mar. Res., 59, 3, 355-390, (2001)
[43] Stern, M. E.; Simeonov, J. A., Internal wave overturns produced by salt fingers, J. Phys. Oceanogr., 32, 3638-3656, (2002)
[44] Stern, M. E.; Turner, J. S., Salt fingers and convecting layers, Deep Sea Res., 16, 1, 97-511, (1969)
[45] Tait, R. I.; Howe, M. R., Some observations of thermohaline stratification in the deep ocean, Deep Sea Res., 15, 275-280, (1968)
[46] Tait, R. I.; Howe, M. R., Thermohaline staircase, Nature, 231, 5299, 178-179, (1971)
[47] Traxler, A.; Stellmach, S.; Garaud, P.; Radko, T.; Brummell, N., Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities, J. Fluid Mech., 677, 530-553, (2011) · Zbl 1241.76229
[48] Turner, J. S., Salt fingers across a density interface, Deep Sea Res., 14, 5, 599, (1967)
[49] Turner, J. S., Double-diffusive phenomena, Annu. Rev. Fluid Mech., 6, 1, 37-54, (1974) · Zbl 0312.76028
[50] Turner, J. S., Multicomponent convection, Annu. Rev. Fluid Mech., 17, 1, 11-44, (1985)
[51] Vauclair, S., Metallic fingers and metallicity excess in exoplanets’ host stars: the accretion hypothesis revisited, Astrophys. J., 605, 2, 874-879, (2004)
[52] Yoshida, J.; Nagashima, H., Numerical experiments on salt-finger convection, Prog. Oceanogr., 56, 3, 435-459, (2003)
[53] You, Y., A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure, Deep Sea Res., 49, 11, 2075-2093, (2002)
[54] Yu, X.; Hsu, T.-J.; Balachandar, S., Convective instability in sedimentation: linear stability analysis, J. Geophys. Res., 118, 256-272, (2013)
[55] Yu, X.; Hsu, T.-J.; Balachandar, S., Convective instability in sedimentation: 3-D numerical study, J. Geophys. Res., 119, 8141-8161, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.