×

Fictitious spin-\(\frac{1}{2}\) operators and correlations in quadrupole nuclear spin system. (English) Zbl 1383.81361

Summary: The Hamiltonian and the spin operators for a spin 3/2 are represented in the basis formed by the Kronecker productions of the \(2 \times 2\) Pauli matrices. This reformulation allows us to represent a spin 3/2 as a system of two coupled fictitious spins 1/2. Correlations between these fictitious spins are studied using well-developed methods. We investigate the temperature and field dependences of correlations, such as mutual information, classical correlations, entanglement, and geometric and quantum discords in the fictitious spin-1/2 system describing a nuclear spin 3/2 which is placed in magnetic and inhomogeneous electric fields. It is shown that the correlations between the fictitious spins demonstrate properties which differ from those of real two-spin systems. In contrast to real systems all the correlations between the fictitious spins do not vanish with increasing external magnetic field; at a high magnetic field the correlations tend to their limiting values. Classical correlations, quantum and geometric discords reveal a pronounced asymmetry relative to the measurements on subsystems (fictitious spins) even in a uniform magnetic field and at symmetrical EFG, \(\eta = 0\). The correlations depend also on the distribution of external charges, on the parameter of symmetry \(\eta\). At \(\eta \neq 0\) quantum and geometric discords have finite values in a zero magnetic field. The proposed approach may be useful in analysis of properties of particles with larger angular momentum, can provide the way to discover new physical phenomenon of quantum correlations, and can be a useful tool for similar definitions of other physical quantities of complex systems.

MSC:

81V35 Nuclear physics
81P40 Quantum coherence, entanglement, quantum correlations
62H20 Measures of association (correlation, canonical correlation, etc.)
81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dirac, P. A. M., The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958). · JFM 56.0745.05
[2] Bogoliubov, N. N., J. Phys. (USSR) 11 (1947) 23.
[3] Bloom, M., Herzog, B. and Hahn, E. L., Phys. Rev.97 (1955) 1699.
[4] Das, T. P. and Hahn, E. L., Solid State Physics, Suppl. I., Seitz, F. and Turnbull, D. (eds.) (Academic Press Inc., New York, 1957).
[5] A. R. Kessel, Fiz. Tverd. Tela (Leningrad) 5 (1963) 1055 [Sov. Phys. Solid State5 (1963) 934].
[6] Leppelmeier, G. W. and Hanh, E. L., Phys. Rev.142 (1966) 179.
[7] Cohen-Tannoudji, C., Diu, B. and Laloe, F., Quantum Mechanics, Vol. 1 (John Wiley & Sons Inc, 1977). · Zbl 1440.81003
[8] Vega, S. and Pines, A., J. Chem. Phys.66 (1977) 5624.
[9] Vega, S., J. Chem. Phys.68 (1978) 5518.
[10] Vega, S. and Naor, Y., J. Chem. Phys.75 (1981) 75.
[11] N. E. Ainbinder and G. B. Furman, Zh. Eksp. Teor. Fiz.85 (1983) 988 [Sov. Phys. JETP58 (1983) 575].
[12] Goldman, M., Advances in Magnetic Resonance14 (1990) 59-74.
[13] Petit, D. and Korb, J.-P., Phys. Rev. B37 (1988) 5761.
[14] Kessel, A. R. and Ermakov, V. L., JETP Lett.70 (1999) 61.
[15] Khitrin, A. K. and Fung, B. M., J. Chem. Phys.112 (2000) 6963.
[16] Furman, G. B. and Goren, S. D., Z. Naturforsch.57a (2002) 315.
[17] Furman, G. B., Goren, S. D., Meerovich, V. M. and Sokolovsky, V. L., J. Phys. Condens. Matter14 (2002) 8715.
[18] Furman, G. B., Meerovich, V. M. and Sokolovsky, V. L., Hyperfine Interaction198 (2010) 153.
[19] Khitrin, A., Song, H. and Fung, B. M., Phys. Rev.A 63 (2001) 020301.
[20] Furman, G. B., Goren, S. D., Meerovich, V. M. and Sokolovsky, V. L., J. Phys. Condens. Matter14 (2002) 8715.
[21] Abragam, A., The Principles of Nuclear Magnetism (Oxford, Clarendon, 1961).
[22] Furman, G., Goren, S. D., Meerovich, V. and Sokolovsky, V., Phys. Scr.90 (2015) 105301.
[23] Modi, K., Brodutch, A., Cable, H., Paterek, T. and Vedral, V., Rev. Mod. Phys.84 (2012) 1655.
[24] Ali, M., Rau, A. R. P. and Alber, G., Phys. Rev. A81 (2010) 042105.
[25] Groisman, B., Popescu, S. and Winter, A., Phys. Rev. A72 (2005) 032317.
[26] Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. and Wootters, W. K., Phys. Rev. Lett.70 (1993) 1895.
[27] Amico, L., Fazio, R., Osterloh, A. and Vedral, V., Rev. Mod. Phys.80 (2008) 517.
[28] Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K., Rev. Mod. Phys.81 (2009) 885.
[29] Wootters, W. K., Phys. Rev. Lett.80 (1998) 2245.
[30] Vidal, G., J. Mod. Opt.47 (2000) 355.
[31] Vidal, G. and Werner, R. F., Phys. Rev. A65 (2002) 032314.
[32] Berry, D. W. and Dowling, M. R., Phys. Rev. A74 (2006) 062301.
[33] Hill, S. and Wootters, W. K., Phys. Rev. Lett.78 (1997) 5022.
[34] Doronin, S. I., Pyrkov, A. N. and Fel’dman, E. B., JETP Lett.85 (2007) 519.
[35] Furman, G. B., Meerovich, V. M. and Sokolovsky, V. L., Quantum Inf. Process8 (2009) 283-291.
[36] Furman, G. B., Meerovich, V. M. and Sokolovsky, V. L., Quantum Inf. Process8 (2009) 379-386. · Zbl 1175.81024
[37] Furman, G. B., Meerovich, V. M. and Sokolovsky, V. L., Quantum Inf. Process.10 (2011) 307.
[38] Furman, G. B., Meerovich, V. M. and Sokolovsky, V. L, Quantum Inf. Process11 (2012) 1603-1617.
[39] Kuznetsova, E. I. and Yurischev, M. A., Quantum Inf. Process12 (2013) 3587-3605. · Zbl 1283.81011
[40] Ollivier, H. and Zurek, W. H., Phys. Rev. Lett.88 (2001) 017901.
[41] Henderson, L. and Vedral, V., J. Phys. A34 (2001) 6899.
[42] Vedral, V., Phys. Rev. Lett.90 (2003) 050401.
[43] Brodutch, A. and Terno, D. R., Phys. Rev. A81 (2010) 062103.
[44] Dakic, B., Vedral, V. and Brukner, C., Phys. Rev. Lett.105 (2010) 190502.
[45] Girolami, D. and Adesso, G., Phys. Rev. A83 (2011) 052108.
[46] Vinjanampathy, S. and Rau, A. R. P., J. Phys. A: Math. Theor.45 (2012) 095303.
[47] Rau, A. R. P., Pramana-J. Phys.83 (2014) 231.
[48] Jie-Qiao, L. and Hao-Sheng, Z., Chin. Phys. B19 (2010) 100311.
[49] Yu, T. and Eberly, J. H., Quantum Inform. Comput.7 (2007) 459.
[50] Luo, S., Phys. Rev. A77 (2008) 042303.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.