×

zbMATH — the first resource for mathematics

Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures. (English) Zbl 1384.05172
Summary: We report on various results, conjectures, and open problems related to Kazhdan-Lusztig polynomials of matroids. We focus on conjectures about the roots of these polynomials, all of which appear here for the first time.

MSC:
05E10 Combinatorial aspects of representation theory
05B35 Combinatorial aspects of matroids and geometric lattices
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
Software:
OEIS; SageMath
PDF BibTeX XML Cite
Full Text: Link arXiv
References:
[1] K. Adiprasito, J. Huh, and E. Katz. “Hodge theory for combinatorial geometries”. 2015. arXiv:1511.02888. · Zbl 1359.05017
[2] F. Brenti. “P-kernels, IC bases and Kazhdan-Lusztig polynomials”. J. Algebra 259 (2003), pp. 613-627.DOI. · Zbl 1022.20015
[3] T. Church, J. S. Ellenberg, and B. Farb. “FI-modules and stability for representations of symmetric groups”. Duke Math. J. 164 (2015), pp. 1833-1910.DOI. · Zbl 1339.55004
[4] T. Church and B. Farb. “Representation theory and homological stability”. Adv. Math. 245 (2013), pp. 250-314.DOI. · Zbl 1300.20051
[5] B. Elias, N. Proudfoot, and M. Wakefield. “The Kazhdan-Lusztig polynomial of a matroid”. Adv. Math. 299 (2016), pp. 36-70.DOI. · Zbl 1341.05250
[6] B. Elias and G. Williamson. “The Hodge theory of Soergel bimodules”. Ann. Math. (2) 180 (2014), pp. 1089-1136.DOI. · Zbl 1326.20005
[7] K. Gedeon. “Kazhdan-Lusztig polynomials of thagomizer matroids”. 2016. arXiv:1610.0534. · Zbl 1369.05029
[8] K. Gedeon, N. Proudfoot, and B. Young. “The equivariant Kazhdan-Lusztig polynomial of a matroid”. 2016. arXiv:1605.01777. · Zbl 1362.05131
[9] D. Kazhdan and G. Lusztig. “Representations of Coxeter groups and Hecke algebras”. Invent. Math. 53 (1979), pp. 165-184.DOI. · Zbl 0499.20035
[10] P. Polo. “Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups”. Represent. Theory 3 (1999), pp. 90-104.DOI. · Zbl 0968.14029
[11] N. Proudfoot, M. Wakefield, and B. Young. “Intersection cohomology of the symmetric reciprocal plane”. J. Algebraic Combin. 43 (2016), pp. 129-138.DOI. · Zbl 1331.05233
[12] S. V. Sam and A. Snowden. “Gröbner methods for representations of combinatorial cate gories”. J. Amer. Math. Soc. 30 (2017), pp. 159-203.DOI. · Zbl 1347.05010
[13] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences”. 2016.URL. · Zbl 1274.11001
[14] R. P. Stanley. “Subdivisions and local h-vectors”. J. Amer. Math. Soc. 5 (1992), pp. 805-851. DOI. · Zbl 0768.05100
[15] W. A. Stein et al. Sage Mathematics Software (Version 7.4). The Sage Development Team. 2016. URL.
[16] M. Wakefield. “Partial flag incidence algebras”. 2016. arXiv:1605.01685.
[17] P. Zhang. “Multiplier sequences and real-rootedness of local h-polynomials of cluster sub divisions”. 2016. arXiv:1605.04780.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.