×

zbMATH — the first resource for mathematics

Several criteria for judging \(H\)- and non-\(H\)-matrices. (English) Zbl 1384.15010
The authors introduce several citeria for judging whether a matrix is an \(H\)-matrix or not. The analysis used by the authors is based on the structure of Nekrasov matrices.

MSC:
15B57 Hermitian, skew-Hermitian, and related matrices
15A45 Miscellaneous inequalities involving matrices
65F05 Direct numerical methods for linear systems and matrix inversion
65G50 Roundoff error
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/1.9781611971262 · doi:10.1137/1.9781611971262
[2] DOI: 10.1016/j.amc.2008.11.037 · Zbl 1184.15026 · doi:10.1016/j.amc.2008.11.037
[3] DOI: 10.1080/00207160412331291053 · Zbl 1074.15031 · doi:10.1080/00207160412331291053
[4] DOI: 10.1016/0024-3795(93)00368-A · Zbl 0832.65031 · doi:10.1016/0024-3795(93)00368-A
[5] DOI: 10.1016/j.cam.2004.09.059 · Zbl 1073.15016 · doi:10.1016/j.cam.2004.09.059
[6] DOI: 10.1016/j.aml.2007.03.018 · Zbl 1156.15014 · doi:10.1016/j.aml.2007.03.018
[7] DOI: 10.1080/00207160701472469 · Zbl 1151.65024 · doi:10.1080/00207160701472469
[8] DOI: 10.1016/j.laa.2004.04.012 · Zbl 1068.15004 · doi:10.1016/j.laa.2004.04.012
[9] DOI: 10.1016/j.amc.2009.12.063 · Zbl 1189.15023 · doi:10.1016/j.amc.2009.12.063
[10] DOI: 10.1016/j.laa.2012.02.001 · Zbl 1248.15018 · doi:10.1016/j.laa.2012.02.001
[11] Pang M.X., Chinese Ann. Math. 6 pp 223– (1985)
[12] Pang M.X., J. Comput. Math. 21 pp 183– (2003)
[13] Sun Y.X., Northeastern Math. J. 7 (4) pp 497– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.