Liu, Jianzhou; Wang, Leilei; Lyu, Zhenhua Several criteria for judging \(H\)- and non-\(H\)-matrices. (English) Zbl 1384.15010 Int. J. Comput. Math. 93, No. 3, 559-566 (2016). The authors introduce several citeria for judging whether a matrix is an \(H\)-matrix or not. The analysis used by the authors is based on the structure of Nekrasov matrices. Reviewer: Omar Hirzallah (Zarqa) Cited in 1 Document MSC: 15B57 Hermitian, skew-Hermitian, and related matrices 15A45 Miscellaneous inequalities involving matrices 65F05 Direct numerical methods for linear systems and matrix inversion 65G50 Roundoff error Keywords:\(H\)-matrix; Nekrasov matrices; \(S\)-Nekrasov matrix PDF BibTeX XML Cite \textit{J. Liu} et al., Int. J. Comput. Math. 93, No. 3, 559--566 (2016; Zbl 1384.15010) Full Text: DOI References: [1] DOI: 10.1137/1.9781611971262 · doi:10.1137/1.9781611971262 [2] DOI: 10.1016/j.amc.2008.11.037 · Zbl 1184.15026 · doi:10.1016/j.amc.2008.11.037 [3] DOI: 10.1080/00207160412331291053 · Zbl 1074.15031 · doi:10.1080/00207160412331291053 [4] DOI: 10.1016/0024-3795(93)00368-A · Zbl 0832.65031 · doi:10.1016/0024-3795(93)00368-A [5] DOI: 10.1016/j.cam.2004.09.059 · Zbl 1073.15016 · doi:10.1016/j.cam.2004.09.059 [6] DOI: 10.1016/j.aml.2007.03.018 · Zbl 1156.15014 · doi:10.1016/j.aml.2007.03.018 [7] DOI: 10.1080/00207160701472469 · Zbl 1151.65024 · doi:10.1080/00207160701472469 [8] DOI: 10.1016/j.laa.2004.04.012 · Zbl 1068.15004 · doi:10.1016/j.laa.2004.04.012 [9] DOI: 10.1016/j.amc.2009.12.063 · Zbl 1189.15023 · doi:10.1016/j.amc.2009.12.063 [10] DOI: 10.1016/j.laa.2012.02.001 · Zbl 1248.15018 · doi:10.1016/j.laa.2012.02.001 [11] Pang M.X., Chinese Ann. Math. 6 pp 223– (1985) [12] Pang M.X., J. Comput. Math. 21 pp 183– (2003) [13] Sun Y.X., Northeastern Math. J. 7 (4) pp 497– (1991) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.