×

Interval Abel integral equation. (English) Zbl 1384.45003

The authors study the solvability of the interval Abel integral equation of the form: \[ \frac{1}{\Gamma(\alpha)} \int\limits_a^t (t-s)^{\alpha-1} X(s) \text{d}s = Y(t) ,\, t \in [a, b] \tag{1} \] where \(\alpha \in (0, 1)\), \(K\) is the set of any nonempty compact intervals of the real line \(\mathbb{R}\), \(Y(\cdot) : [a, b] \to K\) being a given interval-valued function and \(X(\cdot) \in L^1([a,b],K)\) is an unknown interval-valued function.
The aim of the work is to obtain sufficient conditions for the interval-valued function \(Y(\cdot)\) to ensure that the interval Abel integral equation (1) is uniquely solvable.
As first step it is proved that if \(Y(\cdot) \in L^1([a,b],K)\) and the equation (1) has a solution \(X(\cdot) \in L^1([a,b],K)\), then \(Y_{1-\alpha}(\cdot)\) is AC on \([a, b]\), \(Y_{1-\alpha}(a)=\theta\) and \(X(t)=Y_{1-\alpha}'(t)\) for a.e. \(t \in [a, b]\). Here by \(Y_{1-\alpha}(\cdot)\) the interval-valued Riemann-Liouville fractional integral of order \(1-\alpha > 0\) is denoted.
The main result about solvability of (1) in the work is proved under the following assumption: Let \(Y(\cdot) \in L^1([a,b],K)\) be an interval-valued function such that \(Y_{1-\alpha}(a)=\theta\), \(Y_{1-\alpha}(\cdot)\) is AC and \(w\)-increasing on \([a, b]\). Then the integral equation (1) has a unique solution \(X(\cdot) \in L^1([a,b],K)\).
Several appropriate examples illustrating and clarifying the obtained results are given.

MSC:

45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal RP, Arshad S, O’Regan D, Lupulescu V (2012) Fuzzy fractional integral equations under compactness type condition. Fract Calc Appl Anal 15:572-590 · Zbl 1312.45009 · doi:10.2478/s13540-012-0040-1
[2] Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal TMA 72:2859-2862 · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[3] Allahviranloo T, Salahshour S, Abbasbandy S (2012) Explicit solutions of fractional differential equations with uncertainty. Soft Comput 16:297-302 · Zbl 1259.34009 · doi:10.1007/s00500-011-0743-y
[4] Arshad S, Lupulescu V (2011) On the fractional differential equations with uncertainty. Nonlinear Anal TMA 74:3685-3693 · Zbl 1219.34004 · doi:10.1016/j.na.2011.02.048
[5] Arshad S, Lupulescu V (2011) Fractional differential equation with fuzzy initial condition. Electron J Differ Equ 34:1-8 · Zbl 1217.34005
[6] Aumann RJ (1965) Integrals of set-valued functions. J Math Anal Appl 12:1-12 · Zbl 0163.06301 · doi:10.1016/0022-247X(65)90049-1
[7] Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:581-599 · Zbl 1061.26024 · doi:10.1016/j.fss.2004.08.001
[8] Bede B, Stefanini L (2013) Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst 230:119-141 · Zbl 1314.26037 · doi:10.1016/j.fss.2012.10.003
[9] Chalco-Cano Y, Román-Flores H, Jiménez-Gamero MD (2011) Generalized derivative and \[\pi\] π -derivative for set-valued functions. Inf Sci 181:2177-2188 · Zbl 1217.26065 · doi:10.1016/j.ins.2011.01.023
[10] Chalco-Cano Y, Rufián-Lizana A, Román-Flores H, Jiménez-Gamero MD (2013) Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst 219:49-67 · Zbl 1278.26025 · doi:10.1016/j.fss.2012.12.004
[11] Debreu G (1966) Integration of correspondences. In: Proceedings of fifth Berkeley symposium on mathematics statistical and probability, Vol II, part I, pp 351-372 · Zbl 1278.26025
[12] Gorenflo R, Vessella S (1977) Abel integral equations: analysis and applications. Springer, Berlin · Zbl 0717.45002
[13] Hoa NV (2015a) The initial value problem for interval-valued second-order differential equations under generalized H-differentiability. Inf Sci 311:119-148 · Zbl 1390.34013
[14] Hoa NV (2015b) Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst 280:58-90 · Zbl 1377.45002
[15] Hiai F, Umegaki H (1977) Integrals, conditional expectations and martingales of multivalued functions. J Multivar Anal 7:149-182 · Zbl 0368.60006 · doi:10.1016/0047-259X(77)90037-9
[16] Hukuhara M (1967) Intégration des applications mesurables dont la valeur est un compact convex. Funkcial. Ekvac. 10: 205-229 · Zbl 0161.24701
[17] Lupulescu V (2013) Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inf Sci 248:50-67 · Zbl 1339.34098
[18] Lupulescu V (2015) Fractional calculus for interval-valued functions. Fuzzy Sets Syst 265:63-85 · Zbl 1361.26001 · doi:10.1016/j.fss.2014.04.005
[19] Malinowski MT (2011) Interval differential equations with a second type Hukuhara derivative. Appl Math Lett 24:2118-2123 · Zbl 1234.34014 · doi:10.1016/j.aml.2011.06.011
[20] Malinowski MT (2012) Interval Cauchy problem with a second type Hukuhara derivative. Inform Sci 213:94-105 · Zbl 1257.34011 · doi:10.1016/j.ins.2012.05.022
[21] Malinowski MT (2012) Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Anal Real World Appl 13:860-881 · Zbl 1238.34007 · doi:10.1016/j.nonrwa.2011.08.022
[22] Malinowski MT (2012) On set differential equations in Banach spaces—a second type Hukuhara differentiability approach. Appl Math Comput 219:289-305 · Zbl 1297.34073 · doi:10.1016/j.amc.2012.06.019
[23] Markov S (1979) Calculus for interval functions of a real variables. Computing 22:325-337 · Zbl 0408.65026 · doi:10.1007/BF02265313
[24] Moore RE (1979) Methods and applications of interval analysis. SIAM studies in applied mathematics, Philadelphia · Zbl 1234.34014
[25] Salahshour S, Allahviranloo T, Abbasbandy S, Baleanu D (2012) Existence and uniqueness results for fractional differential equations with uncertainty. Adv Differ Equ 112:1-17 · Zbl 1350.34011
[26] Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, Switzerland · Zbl 0818.26003
[27] Stefanini L (2010) A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst 161:1564-1584 · Zbl 1188.26019
[28] Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval valued functions and interval differential equations. Nonlinear Anal 71:1311-1328 · Zbl 1188.28002 · doi:10.1016/j.na.2008.12.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.