×

zbMATH — the first resource for mathematics

Fast computation of the matrix exponential for a Toeplitz matrix. (English) Zbl 1386.65131

MSC:
65F60 Numerical computation of matrix exponential and similar matrix functions
15B05 Toeplitz, Cauchy, and related matrices
65Y20 Complexity and performance of numerical algorithms
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Aricò and G. Rodriguez, A fast solver for linear systems with displacement structure, Numer. Algorithms, 55 (2010), pp. 529–556, . · Zbl 1203.65062
[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ. Tools 11, SIAM, Philadelphia, 2000, .
[3] D. A. Bini, S. Dendievel, G. Latouche, and B. Meini, Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues, Linear Algebra Appl., 502 (2016), pp. 387–419, . · Zbl 1386.65129
[4] S. Chandrasekaran and A. H. Sayed, A fast stable solver for nonsymmetric Toeplitz and quasi-Toeplitz systems of linear equations, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 107–139, . · Zbl 0914.65015
[5] D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, Wiley Finance Ser., John Wiley & Sons, Ltd., Chichester, 2006, .
[6] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576, . · Zbl 0848.65010
[7] A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.), 134 (1987), pp. 306–352, 447 (in Russian). · Zbl 0645.30026
[8] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 279–306, . · Zbl 0915.65024
[9] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection, GAMM-Mitt., 36 (2013), pp. 8–31, . · Zbl 1292.65043
[10] S. Güttel and Y. Nakatsukasa, Scaled and squared subdiagonal Padé approximation for the matrix exponential, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 145–170, . · Zbl 1382.65125
[11] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices, in Linear Algebra for Signal Processing (Minneapolis, MN, 1992), IMA Vol. Math. Appl. 69, Springer, New York, 1995, pp. 63–81, . · Zbl 0823.65020
[12] G. Heinig and K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators, Oper. Theory Adv. Appl. 13, Birkhäuser Verlag, Basel, 1984, . · Zbl 0549.15013
[13] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, .
[14] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM Rev., 51 (2009), pp. 747–764, . · Zbl 1178.65040
[15] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925, . · Zbl 0888.65032
[16] T. Huckle, Computations with Gohberg-Semencul-type formulas for Toeplitz matrices, Linear Algebra Appl., 273 (1998), pp. 169–198, . · Zbl 0891.65024
[17] T. Kailath and J. Chun, Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 114–128, . · Zbl 0797.65021
[18] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev., 37 (1995), pp. 297–386, . · Zbl 0839.65028
[19] T. Kailath and A. H. Sayed, eds., Fast Reliable Algorithms for Matrices with Structure, SIAM, Philadelphia, 1999, .
[20] S. T. Lee, H.-K. Pang, and H.-W. Sun, Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32 (2010), pp. 774–792, . · Zbl 1210.65079
[21] M. López-Fernández, C. Palencia, and A. Schädle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal., 44 (2006), pp. 1332–1350, . · Zbl 1124.65120
[22] R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial Econ., 3 (1976), pp. 125–144, . · Zbl 1131.91344
[23] M. K. Ng, Preconditioned Lanczos methods for the minimum eigenvalue of a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Comput., 21 (2000), pp. 1973–1986, . · Zbl 0959.65058
[24] V. Olshevsky, ed., Structured Matrices in Mathematics, Computer Science, and Engineering. I, Contemp. Math. 280, American Mathematical Society, Providence, RI, 2001. · Zbl 0972.00034
[25] V. Olshevsky, ed., Structured Matrices in Mathematics, Computer Science, and Engineering. II, Contemp. Math. 281, American Mathematical Society, Providence, RI, 2001. · Zbl 0972.00034
[26] V. Pan, Decreasing the displacement rank of a matrix, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 118–121, . · Zbl 0772.15012
[27] M. Redivo-Zaglia and G. Rodriguez, smt: A Matlab toolbox for structured matrices, Numer. Algorithms, 59 (2012), pp. 639–659, . · Zbl 1238.65036
[28] E. W. Sachs and A. K. Strauss, Efficient solution of a partial integro-differential equation in finance, Appl. Numer. Math., 58 (2008), pp. 1687–1703, . · Zbl 1155.65109
[29] A. H. Sayed and T. Kailath, A look-ahead block Schur algorithm for Toeplitz-like matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 388–414, . · Zbl 0824.65010
[30] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent trapezoidal rule, SIAM Rev., 56 (2014), pp. 385–458, . · Zbl 1307.65031
[31] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via randomized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858, . · Zbl 1258.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.