×

zbMATH — the first resource for mathematics

Nasari: integrating explicit knowledge and corpus statistics for a multilingual representation of concepts and entities. (English) Zbl 1386.68184
Summary: Owing to the need for a deep understanding of linguistic items, semantic representation is considered to be one of the fundamental components of several applications in Natural Language Processing and Artificial Intelligence. As a result, semantic representation has been one of the prominent research areas in lexical semantics over the past decades. However, due mainly to the lack of large sense-annotated corpora, most existing representation techniques are limited to the lexical level and thus cannot be effectively applied to individual word senses. In this paper we put forward a novel multilingual vector representation, called Nasari, which not only enables accurate representation of word senses in different languages, but it also provides two main advantages over existing approaches: (1) high coverage, including both concepts and named entities, (2) comparability across languages and linguistic levels (i.e., words, senses and concepts), thanks to the representation of linguistic items in a single unified semantic space and in a joint embedded space, respectively. Moreover, our representations are flexible, can be applied to multiple applications and are freely available at http://lcl.uniroma1.it/nasari/. As evaluation benchmark, we opted for four different tasks, namely, word similarity, sense clustering, domain labeling, and Word Sense Disambiguation, for each of which we report state-of-the-art performance on several standard datasets across different languages.

MSC:
68T50 Natural language processing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agirre, E.; Alfonseca, E.; Hall, K.; Kravalova, J.; Paşca, M.; Soroa, A., A study on similarity and relatedness using distributional and wordnet-based approaches, (Proceedings of NAACL, (2009)), 19-27
[2] Agirre, E.; de Lacalle, O. L., Publicly available topic signatures for all wordnet nominal senses, (Proceedings of LREC, Lisbon, Portugal, (2004)), 1123-1126
[3] Agirre, E.; de Lacalle, O. L.; Soroa, A., Knowledge-based WSD on specific domains: performing better than generic supervised WSD, (Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI, Pasadena, California, (2009)), 1501-1506
[4] Agirre, E.; Soroa, A., Personalizing pagerank for word sense disambiguation, (Proceedings of EACL, (2009)), 33-41
[5] Al-Rfou, R.; Perozzi, B.; Skiena, S., Polyglot: distributed word representations for multilingual nlp, (Proceedings of the Seventeenth Conference on Computational Natural Language Learning, Sofia, Bulgaria, (2013)), 183-192
[6] Banerjee, S.; Pedersen, T., An adapted lesk algorithm for word sense disambiguation using wordnet, (Proceedings of the Third International Conference on Computational Linguistics and Intelligent Text Processing, CICLing’02, Mexico City, Mexico, (2002)), 136-145 · Zbl 1044.68819
[7] Bär, D.; Zesch, T.; Gurevych, I., Dkpro similarity: an open source framework for text similarity, (Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Sofia, Bulgaria, (August 2013)), 121-126
[8] Baroni, M.; Dinu, G.; Kruszewski, G., Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors, (Proceedings of ACL, (2014)), 238-247
[9] Bentivogli, L.; Forner, P.; Magnini, B.; Pianta, E., Revising the wordnet domains hierarchy: semantics, coverage and balancing, (Proceedings of the Workshop on Multilingual Linguistic Resources, (2004), Association for Computational Linguistics), 101-108
[10] Billami, M.-B.; Camacho-Collados, J.; Jacquey, E.; Kister, L., Annotation sémantique et validation terminologique en texte intégral en SHS, (Proceedings of TALN, (2014)), 363-376
[11] Bordag, S., Word sense induction: triplet-based clustering and automatic evaluation, (Proceedings of the 11th Conference on European Chapter of the Association for Computational Linguistics, EACL, Trento, Italy, (2006)), 137-144
[12] Brody, S.; Lapata, M., Bayesian word sense induction, (Proceedings of EACL, (2009)), 103-111
[13] Budanitsky, A.; Hirst, G., Evaluating wordnet-based measures of lexical semantic relatedness, Comput. Linguist., 32, 1, 13-47, (2006) · Zbl 1234.68399
[14] Camacho-Collados, J.; Billami, M.; Jacquey, E.; Kister, L., Approche statistique pour le filtrage terminologique des occurrences de candidats termes en texte intégral, (Proceedings of JADT, (2014)), 121-133
[15] Camacho-Collados, J.; Pilehvar, M. T.; Navigli, R., A framework for the construction of monolingual and cross-lingual word similarity datasets, (Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing - Short Papers, Beijing, China, (2015)), 1-7
[16] Camacho-Collados, J.; Pilehvar, M. T.; Navigli, R., A unified multilingual semantic representation of concepts, (Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, (2015)), 741-751
[17] Camacho-Collados, J.; Pilehvar, M. T.; Navigli, R., NASARI: a novel approach to a semantically-aware representation of items, (Proceedings of NAACL, (2015)), 567-577
[18] Cardellino, C., Spanish billion words corpus and embeddings, (March 2016)
[19] Chen, X.; Liu, Z.; Sun, M., A unified model for word sense representation and disambiguation, (Proceedings of EMNLP, Doha, Qatar, (2014)), 1025-1035
[20] Collobert, R.; Weston, J., A unified architecture for natural language processing: deep neural networks with multitask learning, (Proceedings of ICML, (2008)), 160-167
[21] Crouch, C. J., A cluster-based approach to thesaurus construction, (Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’88, (1988)), 309-320
[22] Curran, J. R.; Moens, M., Improvements in automatic thesaurus extraction, (Proceedings of the ACL-02 Workshop on Unsupervised Lexical Acquisition - vol. 9, ULA ’02, (2002)), 59-66
[23] Dandala, B.; Hokamp, C.; Mihalcea, R.; Bunescu, R. C., Sense clustering using wikipedia, (Proceedings of Recent Advances in Natural Language Processing, Hissar, Bulgaria, (2013)), 164-171
[24] Dandala, B.; Mihalcea, R.; Bunescu, R., Word sense disambiguation using wikipedia, (The People’s Web Meets NLP, (2013), Springer), 241-262
[25] Deerwester, S. C.; Dumais, S. T.; Landauer, T. K.; Furnas, G. W.; Harshman, R. A., Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci., 41, 6, 391-407, (1990)
[26] Delli Bovi, C.; Telesca, L.; Navigli, R., Large-scale information extraction from textual definitions through deep syntactic and semantic analysis, Trans. Assoc. Comput. Linguist., 3, 529-543, (2015)
[27] Di Marco, A.; Navigli, R., Clustering and diversifying web search results with graph-based word sense induction, Comput. Linguist., 39, 3, 709-754, (2013)
[28] Drouin, P., Term extraction using non-technical corpora as a point of leverage, Terminology, 9, 1, 99-115, (2003)
[29] Erk, K., A simple, similarity-based model for selectional preferences, (Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, (2007)), 216-223
[30] Faralli, S.; Navigli, R., A new minimally-supervised framework for domain word sense disambiguation, (Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju, Korea, (2012)), 1411-1422
[31] Faruqui, M.; Dodge, J.; Jauhar, S. K.; Dyer, C.; Hovy, E.; Smith, N. A., Retrofitting word vectors to semantic lexicons, (Proceedings of NAACL, (2015)), 1606-1615
[32] Ferragina, P.; Scaiella, U., Tagme: on-the-fly annotation of short text fragments (by wikipedia entities), (Proceedings of the 19th ACM International Conference on Information and Knowledge Management, (2010), ACM), 1625-1628
[33] Finkelstein, L.; Evgenly, G.; Yossi, M.; Ehud, R.; Zach, S.; Gadi, W.; Eytan, R., Placing search in context: the concept revisited, ACM Trans. Inf. Syst., 20, 1, 116-131, (2002)
[34] Flati, T.; Vannella, D.; Pasini, T.; Navigli, R., Two is bigger (and better) than one: the wikipedia bitaxonomy project, (Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, USA, (2014)), 945-955
[35] Gabrilovich, E.; Markovitch, S., Computing semantic relatedness using wikipedia-based explicit semantic analysis, (Proceedings of IJCAI, (2007)), 1606-1611
[36] Gärdenfors, P., Conceptual spaces: the geometry of thought, (2004), The MIT Press
[37] Gong, Y.; Wang, L.; Hodosh, M.; Hockenmaier, J.; Lazebnik, S., Improving image-sentence embeddings using large weakly annotated photo collections, (Computer Vision—ECCV 2014, (2014), Springer), 529-545
[38] Granada, R.; Trojahn, C.; Vieira, R., Comparing semantic relatedness between word pairs in portuguese using wikipedia, (Computational Processing of the Portuguese Language, (2014)), 170-175
[39] Gurevych, I., Using the structure of a conceptual network in computing semantic relatedness, (Proceedings of IJCNLP, (2005)), 767-778
[40] Gutiérrez, Y.; Castañeda, Y.; González, A.; Estrada, R.; Piug, D. D.; Abreu, I. J.; Pérez, R.; Fernández Orquín, A.; Montoyo, A.; Muñoz, R.; Camara, F., UMCC_DLSI: reinforcing a ranking algorithm with sense frequencies and multidimensional semantic resources to solve multilingual word sense disambiguation, (Proceedings of SemEval 2013, (2013)), 241-249
[41] Hassan, S.; Mihalcea, R., Semantic relatedness using salient semantic analysis, (Proceedings of AAAI, (2011)), 884-889
[42] Heiden, S.; Magué, J.-P.; Pincemin, B., Txm: une plateforme logicielle open-source pour la textométrie—conception et développement, (Statistical Analysis of Textual Data—Proceedings of 10th International Conference Journées d’Analyse Statistique des Données Textuelles, vol. 2, Rome, Italy, (2010)), 1021-1032
[43] Hill, F.; Reichart, R.; Korhonen, A., Simlex-999: evaluating semantic models with (genuine) similarity estimation, (2014)
[44] Hirst, G.; St-Onge, D., Lexical chains as representations of context for the detection and correction of malapropisms, (Fellbaum, C., WordNet: An Electronic Lexical Database, (1998), MIT Press), 305-332
[45] Hoffart, J.; Yosef, M. A.; Bordino, I.; Fürstenau, H.; Pinkal, M.; Spaniol, M.; Taneva, B.; Thater, S.; Weikum, G., Robust disambiguation of named entities in text, (Proceedings of the Conference on Empirical Methods in Natural Language Processing, (2011), Association for Computational Linguistics), 782-792
[46] Hovy, E. H.; Navigli, R.; Ponzetto, S. P., Collaboratively built semi-structured content and artificial intelligence: the story so far, Artif. Intell., 194, 2-27, (2013) · Zbl 1270.68362
[47] Huang, E. H.; Socher, R.; Manning, C. D.; Ng, A. Y., Improving word representations via global context and multiple word prototypes, (Proceedings of ACL, Jeju Island, South Korea, (2012)), 873-882
[48] Iacobacci, I.; Pilehvar, M. T.; Navigli, R., Sensembed: learning sense embeddings for word and relational similarity, (Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long Papers), (2015), Association for Computational Linguistics Beijing, China), 95-105
[49] Jarmasz, M.; Szpakowicz, S., Roget’s thesaurus and semantic similarity, (Proceedings of RANLP, (2003)), 212-219
[50] Jauhar, S. K.; Dyer, C.; Hovy, E., Ontologically grounded multi-sense representation learning for semantic vector space models, (Proceedings of NAACL, (2015)), 683-693
[51] Johansson, R.; Pina, L. N., Embedding a semantic network in a word space, (Proceedings of NAACL, (2015)), 1428-1433
[52] Jones, K. S., A statistical interpretation of term specificity and its application in retrieval, J. Doc., 28, 11-21, (1972)
[53] Jones, M. P.; Martin, J. H., Contextual spelling correction using latent semantic analysis, (Proceedings of the Fifth Conference on Applied Natural Language Processing, ANLC ’97, (1997)), 166-173
[54] Joubarne, C.; Inkpen, D., Comparison of semantic similarity for different languages using the google n-Gram corpus and second-order co-occurrence measures, (Advances in Artificial Intelligence, (2011)), 216-221
[55] Jurgens, D., Embracing ambiguity: a comparison of annotation methodologies for crowdsourcing word sense labels, (HLT-NAACL, (2013)), 556-562
[56] Jurgens, D.; Navigli, R., It’s all fun and games until someone annotates: video games with a purpose for linguistic annotation, Trans. Assoc. Comput. Linguist., 2, 449-464, (2014)
[57] Jurgens, D.; Pilehvar, M. T.; Navigli, R., Semeval-2014 task 3: cross-level semantic similarity, (SemEval 2014, (2014)), 17-26
[58] Jurgens, D.; Stevens, K., Measuring the impact of sense similarity on word sense induction, (Proceedings of the First Workshop on Unsupervised Learning in NLP, EMNLP ’11, Edinburgh, Scotland, (2011)), 113-123
[59] Kashyap, A.; Han, L.; Yus, R.; Sleeman, J.; Satyapanich, T.; Gandhi, S.; Finin, T., Meerkat mafia: multilingual and cross-level semantic textual similarity systems, (Proceedings of the 8th International Workshop on Semantic Evaluation, (2014), Association for Computational Linguistics), 416-423
[60] Kennedy, A.; Hirst, G., Measuring semantic relatedness across languages, (Proceedings of xLiTe: Cross-Lingual Technologies Workshop at the Neural Information Processing Systems Conference, (2012))
[61] Laender, A. H.F.; Ribeiro-Neto, B. A.; da Silva, A. S.; Teixeira, J. S., A brief survey of web data extraction tools, SIGMOD Rec., 31, 2, 84-93, (2002)
[62] Lafon, P., Sur la variabilité de la fréquence des formes dans un corpus, Mots, 1, 127-165, (1980)
[63] Landauer, T.; Dooley, S., Latent semantic analysis: theory, method and application, (Proceedings of CSCL, (2002)), 742-743
[64] Landauer, T. K.; Dumais, S. T., A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge, Psychol. Rev., 104, 2, 211-240, (1997)
[65] Leacock, C.; Chodorow, M., Combining local context and wordnet similarity for word sense identification, (Fellbaum, C., WordNet: An Electronic Lexical Database, (1998), MIT Press), 265-283
[66] Lebart, L.; Salem, A.; Berry, L., Exploring textual data, (1998), Kluwer Academic Publishers
[67] Levy, O.; Goldberg, Y.; Dagan, I., Improving distributional similarity with lessons learned from word embeddings, Trans. Assoc. Comput. Linguist., 3, 211-225, (2015)
[68] Li, J.; Jurafsky, D., Do multi-sense embeddings improve natural language understanding?, (Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP, Lisbon, Portugal, (2015)), 1722-1732
[69] Lin, D., An information-theoretic definition of similarity, (Proceedings of the Fifteenth International Conference on Machine Learning, San Francisco, CA, (1998)), 296-304
[70] Magnini, B.; Cavaglia, G., Integrating subject field codes into wordnet, (LREC, (2000)), 1413-1418
[71] Magnini, B.; Strapparava, C.; Pezzulo, G.; Gliozzo, A., The role of domain information in word sense disambiguation, Nat. Lang. Eng., 8, 04, 359-373, (2002)
[72] Manion, S. L., Sudoku: treating word sense disambiguation & entity linking as a deterministic problem—via an unsupervised & iterative approach, (9th International Workshop on Semantic Evaluation, SemEval 2015, (2015)), 365
[73] Manion, S. L.; Sainudiin, R., Daebak!: peripheral diversity for multilingual word sense disambiguation, (Proceedings of SemEval 2013, (2013)), 250-254
[74] Matuschek, M.; Gurevych, I., Dijkstra-WSA: a graph-based approach to word sense alignment, Trans. Assoc. Comput. Linguist., 1, 151-164, (2013)
[75] McCarthy, D.; Navigli, R., The English lexical substitution task, Lang. Resour. Eval., 43, 2, 139-159, (2009)
[76] Mendes, P. N.; Jakob, M.; García-Silva, A.; Bizer, C., Dbpedia spotlight: shedding light on the web of documents, (Proceedings of the 7th International Conference on Semantic Systems, (2011), ACM), 1-8
[77] Mihalcea, R., Using wikipedia for automatic word sense disambiguation, (Proceedings of NAACL-HLT-07, Rochester, NY, (2007)), 196-203
[78] Mihalcea, R.; Csomai, A., Wikify! linking documents to encyclopedic knowledge, (Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, Lisbon, Portugal, (2007)), 233-242
[79] Mihalcea, R.; Moldovan, D., An automatic method for generating sense tagged corpora, (Proceedings AAAI ’99, Orlando, Florida, USA, (1999)), 461-466
[80] Mihalcea, R.; Wiebe, J., Simcompass: using deep learning word embeddings to assess cross-level similarity, (SemEval 2014, (2014)), 560
[81] Mikolov, T.; Chen, K.; Corrado, G.; Dean, J., Efficient estimation of word representations in vector space, (2013), CoRR
[82] Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; Dean, J., Distributed representations of words and phrases and their compositionality, (Advances in Neural Information Processing Systems, (2013)), 3111-3119
[83] Miller, G. A.; Beckwith, R.; Fellbaum, C. D.; Gross, D.; Miller, K., Wordnet: an online lexical database, Int. J. Lexicogr., 3, 4, 235-244, (1990)
[84] Miller, G. A.; Charles, W. G., Contextual correlates of semantic similarity, Lang. Cogn. Processes, 6, 1, 1-28, (1991)
[85] Miller, G. A.; Leacock, C.; Tengi, R.; Bunker, R., A semantic concordance, (Proceedings of the 3rd DARPA Workshop on Human Language Technology, Plainsboro, N.J., (1993)), 303-308
[86] Milne, D.; Witten, I. H., An effective, low-cost measure of semantic relatedness obtained from wikipedia links, (Proceedings of the Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy at AAAI-08, Chicago, IL, (2008)), 25-30
[87] Milne, D.; Witten, I. H., Learning to link with wikipedia, (Proc. of CIKM-08, (2008)), 509-518
[88] Moro, A.; Navigli, R., Semeval-2015 task 13: multilingual all-words sense disambiguation and entity linking, (Proceedings of SemEval-2015, (2015)), 288-297
[89] Moro, A.; Raganato, A.; Navigli, R., Entity linking meets word sense disambiguation: a unified approach, Trans. Assoc. Comput. Linguist., 2, 231-244, (2014)
[90] Morris, J.; Hirst, G., Lexical cohesion computed by thesaural relations as an indicator of the structure of text, Comput. Linguist., 17, 1, 21-43, (1991)
[91] Mrkšić, N.; Séaghdha, D.Ó.; Thomson, B.; Gašić, M.; Rojas-Barahona, L.; Su, P.-H.; Vandyke, D.; Wen, T.-H.; Young, S., Counter-Fitting word vectors to linguistic constraints, (2016), arXiv preprint
[92] Navigli, R., Meaningful clustering of senses helps boost word sense disambiguation performance, (Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, (2006)), 105-112
[93] Navigli, R., Word sense disambiguation: a survey, ACM Comput. Surv., 41, 2, 1-69, (2009)
[94] Navigli, R.; Faralli, S.; Soroa, A.; de Lacalle, O.; Agirre, E., Two birds with one stone: learning semantic models for text categorization and word sense disambiguation, (Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM, Glasgow, UK, (2011)), 2317-2320
[95] Navigli, R.; Jurgens, D.; Vannella, D., Semeval-2013 task 12: multilingual word sense disambiguation, (Proceedings of SemEval 2013, (2013)), 222-231
[96] Navigli, R.; Lapata, M., Graph connectivity measures for unsupervised word sense disambiguation, (Proceedings of IJCAI, (2007)), 1683-1688
[97] Navigli, R.; Ponzetto, S. P., Babelnet: building a very large multilingual semantic network, (Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL, Uppsala, Sweden, (2010)), 216-225
[98] Navigli, R.; Ponzetto, S. P., Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network, Artif. Intell., 193, 217-250, (2012) · Zbl 1270.68299
[99] Neelakantan, A.; Shankar, J.; Passos, A.; McCallum, A., Efficient non-parametric estimation of multiple embeddings per word in vector space, (Proceedings of EMNLP, Doha, Qatar, (2014)), 1059-1069
[100] Neely, J. H.; Keefe, D. E.; Ross, K. L., Semantic priming in the lexical decision task: roles of prospective prime-generated expectancies and retrospective semantic matching, J. Exper. Psychol., Learn., Mem., Cogn., 15, 1003-1019, (1989)
[101] Niemann, E.; Gurevych, I., The People’s web meets linguistic knowledge: automatic sense alignment of wikipedia and wordnet, (Proceedings of the Ninth International Conference on Computational Semantics, (2011)), 205-214
[102] Palmer, M.; Dang, H.; Fellbaum, C., Making fine-grained and coarse-grained sense distinctions, both manually and automatically, Nat. Lang. Eng., 13, 2, 137-163, (2007)
[103] Pantel, P.; Lin, D., Discovering word senses from text, (Proceedings of KDD, (2002)), 613-619
[104] Pennacchiotti, M.; De Cao, D.; Basili, R.; Croce, D.; Roth, M., Automatic induction of framenet lexical units, (Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, (2008)), 457-465
[105] Pham, N. T.; Lazaridou, A.; Baroni, M., A multitask objective to inject lexical contrast into distributional semantics, (Proceedings of ACL, (2015)), 21-26
[106] Pilehvar, M. T.; Jurgens, D.; Navigli, R., Align, disambiguate and walk: a unified approach for measuring semantic similarity, (Proceedings of ACL, (2013)), 1341-1351
[107] Pilehvar, M. T.; Navigli, R., A large-scale pseudoword-based evaluation framework for state-of-the-art word sense disambiguation, Comput. Linguist., 40, 4, 837-881, (2014)
[108] Pilehvar, M. T.; Navigli, R., A robust approach to aligning heterogeneous lexical resources, (Proceedings of ACL, (2014)), 468-478
[109] Pilehvar, M. T.; Navigli, R., From senses to texts: an all-in-one graph-based approach for measuring semantic similarity, Artif. Intell., 228, 95-128, (2015) · Zbl 1346.68227
[110] Ponzetto, S. P.; Strube, M., Knowledge derived from wikipedia for computing semantic relatedness, J. Artif. Intell. Res., 30, 181-212, (2007) · Zbl 1182.68291
[111] Pradhan, S.; Loper, E.; Dligach, D.; Palmer, M., Semeval-2007 task-17: English lexical sample, SRL and all words, (Proceedings of SemEval, (2007)), 87-92
[112] Proisl, T.; Evert, S.; Greiner, P.; Kabashi, B., Semantiklue: robust semantic similarity at multiple levels using maximum weight matching, (SemEval 2014, (2014)), 532-540
[113] Radinsky, K.; Agichtein, E.; Gabrilovich, E.; Markovitch, S., A word at a time: computing word relatedness using temporal semantic analysis, (Proceedings of the 20th International Conference on World Wide Web, WWW ’11, (2011)), 337-346
[114] Reisinger, J.; Mooney, R. J., Multi-prototype vector-space models of word meaning, (Proceedings of ACL, (2010)), 109-117
[115] Resnik, P., Using information content to evaluate semantic similarity in a taxonomy, (Proceedings of IJCAI, (1995)), 448-453
[116] Rothe, S.; Schütze, H., Autoextend: extending word embeddings to embeddings for synsets and lexemes, (Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long Papers), (July 2015), Association for Computational Linguistics Beijing, China), 1793-1803
[117] Rubenstein, H.; Goodenough, J. B., Contextual correlates of synonymy, Commun. ACM, 8, 10, 627-633, (1965)
[118] Ruiz, P.; Poibeau, T., El92: entity linking combining open source annotators via weighted voting, (9th International Workshop on Semantic Evaluation, SemEval 2015, (2015)), 355-359
[119] Salton, G.; Wong, A.; Yang, C. S., A vector space model for automatic indexing, Commun. ACM, 18, 11, 613-620, (1975) · Zbl 0313.68082
[120] Schütze, H.; Pedersen, J., Information retrieval based on word senses, (Proceedings of SDAIR’95, Las Vegas, Nevada, (1995)), 161-175
[121] Schwartz, R.; Reichart, R.; Rappoport, A., Symmetric pattern based word embeddings for improved word similarity prediction, (CoNLL 2015, (2015)), 258-267
[122] Sinha, R.; Mihalcea, R., Unsupervised graph-based word sense disambiguation using measures of word semantic similarity, (Proceedings of ICSC, (2007)), 363-369
[123] Snow, R.; O’Connor, B.; Jurafsky, D.; Ng, A., Cheap and fast - but is it good? evaluating non-expert annotations for natural language tasks, (Proc. of EMNLP-08, (2008)), 254-263
[124] Snow, R.; Prakash, S.; Jurafsky, D.; Ng, A. Y., Learning to merge word senses, (Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL, Prague, Czech Republic, (2007)), 1005-1014
[125] Søgaard, A.; Agić, Ž.; Alonso, H. M.; Plank, B.; Bohnet, B.; Johannsen, A., Inverted indexing for cross-lingual NLP, (The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of the Asian Federation of Natural Language Processing, ACL-IJCNLP 2015, (2015)), 1713-1722
[126] Strube, M.; Ponzetto, S. P., Wikirelate! computing semantic relatedness using wikipedia, (Proceedings of the 21st National Conference on Artificial Intelligence - vol. 2, AAAI’06, Boston, Massachusetts, (2006)), 1419-1424
[127] Tufiş, D.; Ion, R.; Bozianu, L.; Ceauşu, A.; Ştefănescu, D., Romanian wordnet: current state, new applications and prospects, (Proceedings of 4th Global WordNet Conference, GWC, (2008)), 441-452
[128] Turney, P. D.; Littman, M. L.; Bigham, J.; Shnayder, V., Combining independent modules to solve multiple-choice synonym and analogy problems, (Proceedings of Recent Advances in Natural Language Processing, (2003), Borovets Bulgaria), 482-489
[129] Turney, P. D.; Pantel, P., From frequency to meaning: vector space models of semantics, J. Artif. Intell. Res., 37, 141-188, (2010) · Zbl 1185.68765
[130] Tversky, A.; Gati, I., Similarity, separability, and the triangle inequality, Psychol. Rev., 89, 2, 123-154, (1982)
[131] Vannella, D.; Jurgens, D.; Scarfini, D.; Toscani, D.; Navigli, R., Validating and extending semantic knowledge bases using video games with a purpose, (Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, USA, (2014)), 1294-1304
[132] Vasilescu, F.; Langlais, P.; Lapalme, G., Evaluating variants of the lesk approach for disambiguating words, (LREC, (2004))
[133] Venhuizen, J. N.; Basile, V.; Evang, K.; Bos, J., Gamification for word sense labeling, (Proceedings of the 10th International Conference on Computational semantics (IWCS 2013) - Short Papers, (2013)), 397-403
[134] Vickrey, D.; Biewald, L.; Teyssier, M.; Koller, D., Word sense disambiguation for machine translation, (Proceedings of Conference on Empirical Methods in Natural Language Processing, Vancouver, Canada, (2005)), 771-778
[135] Webber, W.; Moffat, A.; Zobel, J., A similarity measure for indefinite rankings, ACM Trans. Inf. Syst., 28, 4, 1-38, (2010)
[136] Weissenborn, D.; Hennig, L.; Xu, F.; Uszkoreit, H., Multi-objective optimization for the joint disambiguation of nouns and named entities, (Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long Papers), Beijing, China, (2015)), 596-605
[137] Weissenborn, D.; Xu, F.; Uszkoreit, H., Dfki: multi-objective optimization for the joint disambiguation of entities and nouns & deep verb sense disambiguation, (9th International Workshop on Semantic Evaluation, SemEval 2015, (2015)), 335-339
[138] Weston, J.; Bordes, A.; Yakhnenko, O.; Usunier, N., Connecting language and knowledge bases with embedding models for relation extraction, (Proceedings of EMNLP, Seattle, Washington, USA, (2013)), 1366-1371
[139] Wu, Z.; Palmer, M., Verbs semantics and lexical selection, (Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, ACL ’94, Las Cruces, New Mexico, (1994)), 133-138
[140] Xu, J.; Croft, W. B., Query expansion using local and global document analysis, (Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’96, (1996)), 4-11
[141] Yeh, E.; Ramage, D.; Manning, C. D.; Agirre, E.; Soroa, A., Wikiwalk: random walks on wikipedia for semantic relatedness, (Proceedings of the Workshop on Graph-Based Methods for Natural Language Processing, (2009)), 41-49
[142] Zhong, Z.; Ng, H. T., It makes sense: a wide-coverage word sense disambiguation system for free text, (Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL, Uppsala, Sweden, (2010)), 78-83
[143] Zhong, Z.; Ng, H. T., It makes sense: a wide-coverage word sense disambiguation system for free text, (Proceedings of the ACL System Demonstrations, (2010)), 78-83
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.