×

The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes. (English) Zbl 1386.81126

Summary: In the setting of asymptotically anti-de Sitter spacetimes, we consider Klein-Gordon fields subject to Dirichlet boundary conditions, with mass satisfying the Breitenlohner-Freedman bound. We introduce a condition on the b-wave front set of two-point functions of quantum fields, which locally in the bulk amounts to the usual Hadamard condition, and which moreover allows to estimate wave front sets for the holographically induced theory on the boundary. We prove the existence of two-point functions satisfying this condition and show their uniqueness modulo terms that have smooth Schwartz kernel in the bulk and have smooth restriction to the boundary. Finally, using Vasy’s propagation of singularities theorem, we prove an analogue of Duistermaat and Hörmander’s theorem on distinguished parametrices.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
35S05 Pseudodifferential operators as generalizations of partial differential operators
35S35 Topological aspects for pseudodifferential operators in context of PDEs: intersection cohomology, stratified sets, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Avis, S.J., Isham, C.J., Storey, D.: Quantum field theory in anti-de Sitter space-time. Phys. Rev. D 18, 3565-3576 (1978)
[2] Bachelot, A.: The Dirac system on the Anti-de Sitter universe. Commun. Math. Phys. 283, 127-167 (2008) · Zbl 1153.83013
[3] Bachelot, A.: The Klein-Gordon equation in the Anti-de Sitter cosmology. J. Math. Pures Appl. 96(6), 527-554 (2011) · Zbl 1235.81059
[4] Bachelot, A.: New dynamics in the Anti-de Sitter universe \[{AdS}^5\] AdS5. Commun. Math. Phys. 320(3), 723-759 (2013) · Zbl 1269.83023
[5] Bachelot, A.: On the Klein-Gordon equation near a De Sitter brane in an Anti-de Sitter bulk. J. Math. Pures Appl. 105(2), 165-197 (2016) · Zbl 1336.35241
[6] Benini, M., Dappiaggi, C.: Models of free quantum field theories on curved backgrounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015) · Zbl 1334.81099
[7] Bär, C., Ginoux, N., Pfäffle, F.: Wave equation on Lorentzian manifolds and quantization. ESI Lectures in Mathematics and Physics, EMS (2007) · Zbl 1118.58016
[8] Bros, J., Epstein, H., Moschella, U.: Towards a general theory of quantized fields on the anti-de Sitter space-time. Commun. Math. Phys. 231, 481 (2002) · Zbl 1026.81040
[9] Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623-661 (2000) · Zbl 1040.81067
[10] Brum, M., Fredenhagen, K.: ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes. Class. Quantum Grav. 31(2), 025024 (2014) · Zbl 1292.83027
[11] Breitenlohner, P., Freedman, D.Z.: Positive energy in anti-de Sitter backgrounds and gauged extended supergravity. Phys. Lett. B 115(3), 197-201 (1982)
[12] Belokogne, A., Folacci, A., Queva, J.: Stueckelberg massive electromagnetism in de Sitter and anti-de Sitter spacetimes: two-point functions and renormalized stress-energy tensors. Phys. Rev. D 94, 105028 (2016)
[13] Brum, M., Jorás, S.E.: Hadamard state in Schwarzschild-de Sitter spacetime. Class. Quantum Grav. 32(1), 015013 (2014) · Zbl 1309.83061
[14] Curry, S., Gover, R.: An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity. preprint arXiv:1412.7559 (2014) · Zbl 1416.83014
[15] Dang, N.V.: Renormalization of quantum field theory on curved spacetimes, a causal approach. Ph.D. thesis, Paris Diderot University (2013) · Zbl 1292.83033
[16] Dappiaggi, C., Ferreira, H.R.C.: Hadamard states for a scalar field in anti-de Sitter spacetime with arbitrary boundary conditions. Phys. Rev. D 94, 125016 (2016)
[17] Dold, D.: Unstable mode solutions to the Klein-Gordon equation in Kerr-anti-de Sitter spacetimes. Commun. Math. Phys. 350(2), 639-697 (2017) · Zbl 1362.35300
[18] Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields, Cambridge Monographs in Mathematical Physics. Cambridge University Press, Cambridge (2013) · Zbl 1271.81004
[19] Duistermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Math. 128, 183-269 (1972) · Zbl 0232.47055
[20] Dütsch, M., Rehren, K.-H.: A comment on the dual field in the AdS-CFT correspondence. Lett. Math. Phys. 62, 171-184 (2002) · Zbl 1031.81055
[21] Dütsch, M., Rehren, K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincare 4, 613-635 (2003) · Zbl 1038.81051
[22] Dütsch, M., Rehren, K.-H.: Protecting the conformal symmetry via bulk renormalization on anti de Sitter space. Commun. Math. Phys. 307, 315 (2011) · Zbl 1229.83022
[23] Dereziński, J., Richard, S.: On Schrödinger operators with inverse square potentials on the half-line. Ann. Henri Poincaré 18(3), 869-928 (2017). doi:10.1007/s00023-016-0520-7 · Zbl 1370.81070
[24] Enciso, A., Kamran, N.: A singular initial-boundary value problem for nonlinear wave equations and holography in asymptotically anti-de Sitter spaces. J. Math. Pures Appl. 103, 1053-1091 (2015) · Zbl 1406.35203
[25] Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and Hadamard states. J. Math. Phys. 57, 072303 (2016) · Zbl 1345.81033
[26] Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved space-time, II. Ann. Phys. 136, 243-272 (1981) · Zbl 0495.35054
[27] Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories, pp. 17-55. Springer, Berlin (2015) · Zbl 1315.81070
[28] Fredenhagen, K., Rejzner, K.: Quantum field theory on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57(3), 031101 (2016) · Zbl 1338.81299
[29] Fulling, S.A., Sweeny, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved space-time. Commun. Math. Phys. 63, 257-264 (1978) · Zbl 0401.35065
[30] Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Class. Quantum Grav. 30, 235027 (2013) · Zbl 1284.83057
[31] Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015) · Zbl 1334.81079
[32] Gannot, O.: Elliptic boundary value problems for Bessel operators, with applications to anti-de Sitter spacetimes. preprint arxiv:1507.02794 (2015) · Zbl 1402.35104
[33] Gannot, O.: Existence of quasinormal modes for Kerr-AdS black holes. Ann. Henri Poincaré 18(8), 2757-2788 (2017) · Zbl 1375.83025
[34] Gell-Redman, J., Haber, N., Vasy, A.: The Feynman propagator on perturbations of Minkowski space. Commun. Math. Phys. 342(1), 333-384 (2016) · Zbl 1335.81085
[35] Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186-225 (1991) · Zbl 0765.53034
[36] Gover, R., Latini, E., Waldron, A.: Poincaré-Einstein holography for forms via conformal geometry in the bulk. Mem. Am. Math. Soc. 235, 1106 (2015) · Zbl 1326.53057
[37] Gérard, C., Oulghazi, O., Wrochna, M.: Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry. Commun. Math. Phys. 352(2), 352-519 (2017) · Zbl 1364.35362
[38] Gover, R., Waldron, A.: Boundary calculus for conformally compact manifolds. Indiana Univ. Math. J. 63(1), 119-163 (2014) · Zbl 1310.53060
[39] Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325(2), 713-755 (2014) · Zbl 1298.81214
[40] Hintz, P.: Global analysis of linear and nonlinear wave equations on cosmological spacetimes. Ph.D. thesis, Stanford University (2015)
[41] Holzegel, G., Luk, J., Smulevici, J., Warnick, C.: Asymptotic properties of linear field equations in anti-de Sitter space. arXiv:1502.04965 (2015) · Zbl 1448.83003
[42] Hollands, S.: The Hadamard condition for Dirac fields and adiabatic states on Robertson-Walker spacetimes. Commun. Math. Phys. 216, 635-661 (2001) · Zbl 0976.58023
[43] Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de sitter space-times. J. Hyperbolic Differ. Equ. 09(02), 239-261 (2012) · Zbl 1250.83025
[44] Hörmander, L.: The Analysis of Linear Partial Differential Operators I-IV, Classics in Mathematics. Springer, Berlin (2007) · Zbl 1115.35005
[45] Holzegel, G., Smulevici, J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. Anal. PDE 7(5), 1057-1090 (2014) · Zbl 1300.83030
[46] Hintz, P., Vasy, A.: The global non-linear stability of the Kerr-de Sitter family of black holes. preprint arXiv:1606.04014 (2016) · Zbl 1391.83061
[47] Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309-345 (2002) · Zbl 1015.81043
[48] Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(3), 277-311 (2005) · Zbl 1078.81062
[49] Holzegel, G., Warnick, C.M.: Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes. J. Funct. Anal. 266(4), 2436-2485 (2014) · Zbl 1292.83033
[50] Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. In: Ashtekar, A., Berger, B. K., Isenberg, J., MacCallum, M. (eds.) General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press, Cambridge (2015) · Zbl 1357.81144
[51] Idelon-Riton, G.: Scattering theory for the Dirac equation in Schwarzschild-anti-de Sitter space-time. preprint arXiv:1412.0869 (2014) · Zbl 07430944
[52] Ishibashi, A., Wald, R.M.: Dynamics in non-globally-hyperbolic static spacetimes: 2. General analysis of prescriptions for dynamics. Class. Quantum Grav. 20(16), 3815-3826 (2004) · Zbl 1045.83014
[53] Ishibashi, A., Wald, R.M.: Dynamics in nonglobally hyperbolic static space-times: 3. Anti-de Sitter space-time. Class. Quantum Grav. 21, 2981-3014 (2004) · Zbl 1064.83006
[54] Junker, W.: Hadamard States, adiabatic vacua and the construction of physical states for scalar quantum fields on curved spacetime. Rev. Math. Phys. 8, 1091-1159 (1996) · Zbl 0869.53053
[55] Kay, B.S.: The principle of locality and quantum field theory on (non globally hyperbolic) curved spacetimes. Rev. Math. Phys. (Special Issue), 167-195 (1992) · Zbl 0779.53052
[56] Kay, B.S., Larkin, P.: Pre-holography. Phys. Rev. D 77, 121501R (2008)
[57] Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015) · Zbl 1334.81081
[58] Kay, B.S., Ortíz, L.: Brick walls and AdS/CFT. Gen. Relativ. Gravit. 46, 1727 (2014) · Zbl 1291.83145
[59] Kovařík, H., Truc, F.: Schrödinger operators on a half-line with inverse square potentials. Math. Model. Nat. Phenom. 9, 170-176 (2014) · Zbl 1320.47047
[60] Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49 (1991) · Zbl 0861.53074
[61] Kent, C., Winstanley, E.: Hadamard renormalized scalar field theory on anti-de Sitter spacetime. Phys. Rev. D 91(4), 044044 (2015)
[62] Lebeau, G.: Propagation des ondes dans les variétés à coin. Ann. Scient. Éc. Norm. Sup. 30, 429-497 (1997) · Zbl 0891.35072
[63] Maldacena, J.: The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38(4), 1113-1133 (1999) · Zbl 0969.81047
[64] Melrose, R.: Transformation of boundary problems. Acta Math. 147(3-4), 149-236 (1993) · Zbl 0492.58023
[65] Melrose, R.: The Atiyah-Patodi-Singer index theorem, vol. 4. AK Peters, Wellesley (1993) · Zbl 0796.58050
[66] Mazzeo, R., Melrose, R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Func. Anal. 75, 260-310 (1987) · Zbl 0636.58034
[67] Melrose, R., Vasy, A., Wunsch, J.: Propagation of singularities for the wave equation on manifolds with edges. J. Func. Anal. 75, 260-310 (1987) · Zbl 0636.58034
[68] Morrison, I.A.: Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography. J-HEP 5, 1-29 (2014)
[69] Radzikowski, M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529-553 (1996) · Zbl 0858.53055
[70] Radzikowski, M.: A local to global singularity theorem for quantum field theory on curved spacetime. Commun. Math. Phys. 180, 1 (1996) · Zbl 0874.58079
[71] Rehren, K.-H.: Local quantum observables in the anti-de Sitter-conformal QFT correspondence. Phys. Lett. B 493(3), 383-388 (2000) · Zbl 1058.81610
[72] Rehren, K.-H.: Algebraic holography. Ann. Henri Poincaré 1, 607 (2000) · Zbl 1024.81026
[73] Ribeiro, P.L.: Algebraic holography in asymptotically simple, asymptotically AdS spacetimes. Prog. Math. 251, 253-270 (2007) · Zbl 1166.81355
[74] Ribeiro, P. L.: Structural and dynamical aspects of the AdS-CFT correspondence: a rigorous approach. Ph.D. Thesis, University of São Paulo (2007) · Zbl 0976.58023
[75] Sanders, K.: Equivalence of the (generalised) hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295(2), 485-501 (2010) · Zbl 1192.53072
[76] Sanders, K.: On the construction of Hartle-Hawking-Israel states across a static bifurcate killing horizon. Lett. Math. Phys. 105(4), 575-640 (2015) · Zbl 1325.81129
[77] Sánchez, M.: On the geometry of static spacetimes. Nonlinear Anal. 63, 455-463 (2005) · Zbl 1159.53343
[78] Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203-1246 (2001) · Zbl 1029.81053
[79] Vasy, A.: Propagation of singularities for the wave equation on manifolds with corners. Ann. Math. (2) 168(3), 749-812 (2008) · Zbl 1171.58007
[80] Vasy, A.: Diffraction by edges. Modern Phys. Lett. B 22, 2287-2328 (2008) · Zbl 1159.78302
[81] Vasy, A.: The wave equation on asymptotically de Sitter-like spaces. Adv. Math. 223(1), 49-97 (2010) · Zbl 1191.35064
[82] Vasy, A.: The wave equation on asymptotically anti-de Sitter spaces. Anal. PDE 5, 81-144 (2012) · Zbl 1277.35014
[83] Vasy, A.: On the positivity of propagator differences. Ann. Henri Poincaré 18(3), 983-1007 (2017) · Zbl 1360.81173
[84] Vasy, A., Wrochna, M.: Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes. preprint arXiv:1512.08052 (2015) · Zbl 1457.81037
[85] Wald, R.M.: Dynamics in nonglobally hyperbolic, static space times. J. Math. Phys. 21, 2802-2805 (1980)
[86] Warnick, C.M.: The massive wave equation in asymptotically AdS spacetimes. Commun. Math. Phys. 321(1), 85-111 (2013) · Zbl 1271.83021
[87] Warnick, C.M.: On quasinormal modes of asymptotically anti-de Sitter black holes. Commun. Math. Phys. 333(2), 959-1035 (2015) · Zbl 1308.83107
[88] Zahn, J.: Generalized Wentzell boundary conditions and holography. preprint arXiv:1512.05512 (2015) · Zbl 1292.83027
[89] Yagdjian, K., Galstian, A.: The Klein-Gordon equation in anti-de Sitter spacetime. Rend. Sem. Mat. Univ. Pol. Torino 67, 291-292 (2009) · Zbl 1184.35109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.