Compactness results for Schrödinger equations with asymptotically linear terms. (English) Zbl 1387.35246

Summary: We study the nonlinear problem \[ -\Delta u+V(x)=f(x,u),\quad x\in\mathbb R^N, \]
\[ \lim_{|x|\to\infty}u(x)=0, \] where the Schrödinger operator \(-\Delta+V\) is semibounded and the nonlinearity \(f\) is linearly bounded. We establish compactness of Palais-Smale sequences and Cerami sequences for the associated energy functional under general spectral-theoretic assumptions. Applying these results, we obtain existence of three nontrivial solutions if the energy functional has a mountain-pass geometry.


35J60 Nonlinear elliptic equations
47J30 Variational methods involving nonlinear operators
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI


[1] Bartsch, T.; Liu, Z.L.; Weth, T., Sign-changing solutions of superlinear Schrödinger equations, Comm. partial differential equations, 29, 25-42, (2004) · Zbl 1140.35410
[2] Costa, D.; Tehrani, H., On a class of asymptotically linear elliptic problems in \(\mathbb{R}^N\), J. differential equations, 173, 470-494, (2001) · Zbl 1098.35526
[3] Deift, P.; Hempel, R., On the existence of eigenvalues of the Schrödinger operator \(H - \lambda W\) in a gap of \(\sigma(H)\), Comm. math. phys., 103, 461-490, (1986) · Zbl 0594.34022
[4] de Figueiredo, D.G.; Gossez, J.-P., Strict monotonicity of eigenvalues and unique continuation, Comm. partial differential equations, 17, 339-346, (1992) · Zbl 0777.35042
[5] Gossez, J.-P.; Loulit, A., A note on two notions of unique continuation, Bull. soc. math. belg. Sér. B, 45, 257-268, (1993) · Zbl 0828.35035
[6] Heinz, H.-P., On the number of solutions of nonlinear Schrödinger equations and on unique continuation, J. differential equations, 116, 149-171, (1995) · Zbl 0840.35105
[7] Hempel, R., On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator \(H \pm \lambda W\) in a spectral gap of H, J. reine angew. math., 399, 38-59, (1989) · Zbl 0681.35066
[8] Jeanjean, L., On the existence of bounded palais – smale sequences and application to a landesman – lazer-type problem set on \(\mathbb{R}^N\), Proc. roy. soc. Edinburgh sect. A, 129, 787-809, (1999) · Zbl 0935.35044
[9] Jeanjean, L.; Tanaka, K., A positive solution for an asymptotically linear elliptic problem on \(\mathbb{R}^N\) autonomous at infinity, ESIAM control optim. calc. var., 7, 597-614, (2002) · Zbl 1225.35088
[10] Jerison, D.; Kenig, C.E., Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of math., 121, 463-488, (1985) · Zbl 0593.35119
[11] Kryszewski, W.; Szulkin, A., Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. differential equations, 3, 441-472, (1998) · Zbl 0947.35061
[12] Li, G.B.; Szulkin, A., An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. contemp. math., 4, 763-776, (2002) · Zbl 1056.35065
[13] Li, G.B.; Zhou, H.S., The existence of a positive solution to asymptotically linear scalar field equations, Proc. roy. soc. Edinburgh sect. A, 130, 81-105, (2000) · Zbl 0942.35075
[14] Liu, Z.L.; Sun, J.X., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. differential equations, 172, 257-299, (2001) · Zbl 0995.58006
[15] Liu, Z.L.; van Heerden, F.A.; Wang, Z.-Q., Nodal type bound states of Schrödinger equations via invariant set and minimax methods, J. differential equations, 214, 358-390, (2005) · Zbl 1210.35044
[16] Z.L. Liu, Z.-Q. Wang, T. Weth, Multiple solutions of nonlinear Schrödinger equations via flow invariance and Morse theory, Proc. Roy. Soc. Edinburgh, in press
[17] Simon, B., Schrödinger semigroups, Bull. amer. math. soc. (N.S.), 7, 447-526, (1982) · Zbl 0524.35002
[18] Stuart, C.A.; Zhou, H.S., Applying the mountain pass theorem to an asymptotically linear elliptic equation on \(R^N\), Comm. partial differential equations, 24, 1731-1758, (1999) · Zbl 0935.35043
[19] van Heerden, F.A., Multiple solutions for a Schrödinger type equation with an asymptotically linear term, Nonlinear anal., 55, 739-758, (2003) · Zbl 1145.35374
[20] van Heerden, F.A.; Wang, Z.-Q., Schrödinger type equations with asymptotically linear nonlinearities, Differential integral equations, 16, 257-280, (2003) · Zbl 1030.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.