×

Some results based on maximal regularity regarding population models with age and spatial structure. (English) Zbl 1387.35373

Summary: We review some results on abstract linear and nonlinear population models with age and spatial structure. The results are mainly based on the assumption of maximal \(L_p\)-regularity of the spatial dispersion term. In particular, this property allows us to characterize completely the generator of the underlying linear semigroup and to give a simple proof of asynchronous exponential growth of the semigroup. Moreover, maximal regularity is also a powerful tool in order to establish the existence of nontrivial positive equilibrium solutions to nonlinear equations by fixed point arguments or bifurcation techniques. We illustrate the results with examples.

MSC:

35K59 Quasilinear parabolic equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B32 Bifurcations in context of PDEs
47D06 One-parameter semigroups and linear evolution equations
92D25 Population dynamics (general)
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Amann, H, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 620-709, (1976) · Zbl 0345.47044
[2] Amann, H, Dual semigroups and second-order linear elliptic boundary value problems, Israel J. Math., 45, 225-254, (1983) · Zbl 0535.35017
[3] Amann, H.: Linear and quasilinear parabolic problems, vol. I. Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA (1995) · Zbl 0819.35001
[4] Anita, L-I; Anita, S, Asymptotic behavior of the solutions to semi-linear age-dependent population dynamics with diffusion and periodic vital rates, Math. Popul. Stud., 15, 114-121, (2008) · Zbl 1187.37119
[5] Ayati, B, A structured-population model of proteus mirabilis swarm-colony development, J. Math. Biol., 52, 93-114, (2006) · Zbl 1091.92058
[6] Ayati, B; Webb, G; Anderson, R, Computational methods and results for structured multiscale models of tumor invasion, SIAM J. Multsc. Mod. Simul., 5, 1-20, (2006) · Zbl 1182.92039
[7] Bátkai, A., Fijavž, M.K., Rhandi, A.: Positive operator semigroups. Oper. Theor. Adv. Appl. 257, Birkhäuser Cham (2017) · Zbl 1197.35041
[8] Busenberg, S; Langlais, M, Global behaviour in age structured S.I.S. models with seasonal periodicities and vertical transmission, J. Math. Anal. Appl., 213, 511-533, (2007) · Zbl 1002.92556
[9] Crandall, MG; Rabinowitz, PH, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340, (1971) · Zbl 0219.46015
[10] Cushing, JM, Existence and stability of equilibria in age-structured population dynamics, J. Math. Biol., 20, 259-276, (1984) · Zbl 0553.92014
[11] Cushing, JM, Global branches of equilibrium solutions of the mckendrick equations for age structured population growth, Comp. Math. Appl., 11, 175-188, (1985) · Zbl 0578.92020
[12] Cushing, J, Equilibria in structured populations, J. Math. Biol., 23, 15-39, (1985) · Zbl 0591.92018
[13] Daners, D., Koch-Medina, P.: Abstract evolution equations, periodic problems, and applications. Pitman Res. Notes Math. Ser., 279, Longman, Harlow (1992) · Zbl 0789.35001
[14] Delgado, M; Molina-Becerra, M; Suárez, A, Nonlinear age-dependent diffusive equations: a bifurcation approach, J. Diff. Equ., 244, 2133-2155, (2008) · Zbl 1145.35019
[15] Delgado, M; Molina-Becerra, M; Suárez, A, A nonlinear age-dependent model with spatial diffusion, J. Math. Anal. Appl., 313, 366-380, (2006) · Zbl 1116.35062
[16] Delgado, M; Molina-Becerra, M; Suárez, A, The sub-supersolution method for an evolutionary reaction-diffusion age-dependent problem, Diff. Integr. Equ., 18, 155-168, (2005) · Zbl 1212.35230
[17] Delgado, M; Suárez, A, Age-dependent diffusive Lotka-Volterra type systems, Math. Comput. Model., 45, 668-680, (2007) · Zbl 1165.35395
[18] Dore, G, Maximal regularity in \(L^p\) spaces for an abstract Cauchy problem, Adv. Diff. Equ., 5, 293-322, (2000) · Zbl 0993.34058
[19] Ducrot, A; Magal, P, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 139, 459-482, (2009) · Zbl 1178.35117
[20] Dyson, J; Sanchez, E; Villella-Bressan, R; Webb, GF, An age and spatially structured model of tumor invasion with haptotaxis, Discrete Contin. Dyn. Syst. Ser. B, 8, 45-60, (2007) · Zbl 1128.92016
[21] Dyson, J; Villella-Bressan, R; Webb, GF, An age and spatially structured model of tumor invasion with haptotaxis. II, Math. Popul. Stud., 15, 73-95, (2008) · Zbl 1145.92016
[22] Engel, K.-J.: Nagel, R.: One-parameter semigroups for linear evolution equations. Springer New York Inc. (2000) · Zbl 0952.47036
[23] Engel, K.-J., Nagel, R.: A short course on operator semigroups. Springer, New York (2006) · Zbl 1106.47001
[24] Esipov, SE; Shapiro, JA, Kinetic model of proteus mirabilis swarm colony development, J. Math. Biol., 36, 249-268, (1998) · Zbl 0895.92006
[25] Feller, W, On the integral equation of renewal theory, Ann. Math. Stat., 12, 243-267, (1941) · Zbl 0026.23001
[26] Fitzgibbon, W; Parrott, M; Webb, G, Diffusion epidemic models with incubation and crisscross dynamics, Math. Biosci., 128, 131-155, (1995) · Zbl 0836.92018
[27] Guo, BZ; Chan, WL, On the semigroup for age dependent population dynamics with spatial diffusion, J. Math. Anal. Appl., 184, 190-199, (1994) · Zbl 0823.92019
[28] Gurtin, ME, A system of equations for age-dependent population diffusion, J. Thero. Biol., 40, 389-392, (1973)
[29] Gurtin, ME; MacCamy, RC, Nonlinear age-dependent population dynamics, Arch. Rat. Mech. Anal., 54, 281-300, (1974) · Zbl 0286.92005
[30] Gurtin, ME; MacCamy, RC, Diffusion models for age-structured populations, Math. Biosci., 54, 49-59, (1981) · Zbl 0459.92015
[31] Gyllenberg, M; Webb, GF, Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl., 167, 443-467, (1992) · Zbl 0818.47064
[32] Huyer, W, Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion, Semigroup Forum, 49, 99-114, (1994) · Zbl 0827.92021
[33] Iannelli, M., Martcheva, M., Milner, F.A.: Gender-structured population modeling. Mathematical Methods, Numerics, and Simulations. SIAM Frontiers in Applied Mathematics, Philadelphia (2005) · Zbl 1107.91076
[34] Kato, T, Integration of the equation of evolution in Banach spaces, J. Math. Soc. Japan, 5, 208-234, (1953) · Zbl 0052.12601
[35] Kunya, T; Oizumi, R, Existence result for an age-structured SIS epidemic model with spatial diffusion, Nonlinear Anal. Real World Appl., 23, 196-208, (2015) · Zbl 1319.35274
[36] Langlais, M, Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol., 26, 319-346, (1988) · Zbl 0713.92019
[37] Laurençot, Ph; Walker, Ch, An age and spatially structured population model for proteus mirabilis swarm-colony development, Math. Mod. Nat. Phen., 7, 49-77, (2008) · Zbl 1337.92023
[38] Magal, P; Thieme, HR, Eventual compactness for semiflows generated by nonlinear age-structured models, Commun. Pure Appl. Anal., 3, 695-727, (2004) · Zbl 1083.47061
[39] McKendrick, AG, Applications of mathematics to medical problems, Proc. Edin. Math. Soc., 44, 435-438, (1926)
[40] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44, Springer (1983) · Zbl 0516.47023
[41] Pejsachowicz, J; Rabier, PJ, Degree theory for \(C^1\) Fredholm mappings of index 0, J. Anal. Math., 76, 289-319, (1998) · Zbl 0932.47046
[42] Prüß, J, On the qualitative behaviour of populations with age-specific interactions, Comp. Math. Appl., 9, 327-339, (1983) · Zbl 0537.92017
[43] Prüß, J, Maximal regularity for evolution equations in \(L\)_{\(p\)}-spaces, Conf. Sem. Mat. Univ. Bari, 285, 1-39, (2003)
[44] Rabinowitz, PH, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 487-513, (1971) · Zbl 0212.16504
[45] Restrepo, G, Differentiable norms in Banach spaces, Bull. Am. Math. Soc., 70, 413-414, (1964) · Zbl 0173.41304
[46] Rhandi, A, Positivity and stability for a population equation with diffusion on \(L^1\), Positivity, 2, 101-113, (1998) · Zbl 0918.34058
[47] Rhandi, A; Schnaubelt., R, Asymptotic behaviour of a non-autonomous population equation with diffusion in \(L^1\), Disc. Contin. Dyn. Systems, 5, 663-683, (1999) · Zbl 1002.92016
[48] Sharpe, FR; Lotka, AJ, A problem in age distributions, Phil. Mag., 21, 98-130, (1911) · JFM 42.1030.02
[49] Shi, J; Wang, X, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Equ., 246, 2788-2812, (2009) · Zbl 1165.35358
[50] Simon, J.: Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. 146(4), 65-96 (1987) · Zbl 0629.46031
[51] Thieme, HR, Positive perturbation of operator semigroups: growth bounds, essential compactness, and asynchronous exponential growth, Discrete Contin. Dyn. Syst., 4, 735-764, (1998) · Zbl 0988.47024
[52] Thieme, H.R.: Mathematics in Population Biology. Princeton series in theoretical and computational biology. Princeton University Press, Princeton (2003) · Zbl 1054.92042
[53] Triebel, H.: Interpolation theory, function spaces, differential operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995) · Zbl 0830.46028
[54] von Foerster, H.: Some remarks on changing populations. The Kinetics of Cellular Proliferation, Grune and Stratton, pp. 382-407 (1959) · Zbl 1145.35019
[55] Walker, Ch, Global well-posedness of a haptotaxis model including age and spatial structure, Diff. Int. Eq., 20, 1053-1074, (2007) · Zbl 1212.35222
[56] Walker, Ch, Global existence for an age and spatially structured haptotaxis model with nonlinear age-boundary conditions, Europ. J. Appl. Math., 19, 113-147, (2008) · Zbl 1136.92023
[57] Walker, Ch, Positive equilibrium solutions for age and spatially structured population models, SIAM J. Math. Anal., 41, 1366-1387, (2009) · Zbl 1204.35040
[58] Walker, Ch, Global bifurcation of positive equilibria in nonlinear population models, J. Diff. Equ., 248, 1756-1776, (2010) · Zbl 1197.35041
[59] Walker, Ch, Age-dependent equations with non-linear diffusion, Discrete Contin. Dyn. Syst., 26, 691-712, (2010) · Zbl 1184.35201
[60] Walker, Ch, Bifurcation of positive equilibria in nonlinear structured population models with varying mortality rates, Ann. Mat. Pura Appl., 190, 1-19, (2011) · Zbl 1242.35036
[61] Walker, Ch, On positive solutions of some system of reaction-diffusion equations with nonlocal initial conditions, J. Reine Angew. Math., 660, 149-179, (2011) · Zbl 1242.35141
[62] Walker, Ch, On nonlocal parabolic steady-state equations of cooperative or competing systems, Nonlinear Anal. Real World Appl., 12, 3552-3571, (2011) · Zbl 1231.35097
[63] Walker, Ch, Positive solutions of some parabolic system with cross-diffusion and nonlocal initial conditions, NoDEA Nonlinear Diff. Equ. Appl., 19, 195-218, (2012) · Zbl 1252.35043
[64] Walker, Ch, Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations, Monatsh. Math., 170, 481-501, (2013) · Zbl 1277.47057
[65] Walker, Ch, Global continua of positive solutions for some quasilinear parabolic equations with a nonlocal initial condition, J. Dyn. Diff. Equ., 25, 159-172, (2013) · Zbl 1264.35029
[66] Webb, G.F.: Theory of nonlinear age-dependent population dynamics. Monographs and Textbooks in Pure and Applied Mathematics, 89. Marcel Dekker, Inc., New York (1985)
[67] Webb, GF, An age-dependent epidemic model with spatial diffusion, Arch. Rat. Mech. Anal., 75, 91-102, (1980) · Zbl 0484.92018
[68] Webb, GF, An operator-theoretic formulation of asynchronous exponential growth, Trans. Am. Math. Soc., 303, 751-763, (1987) · Zbl 0654.47021
[69] Webb, G.F.: Population models structured by age, size, and spatial position. Structured population models in biology and epidemiology, 149, Lecture Notes in Math, vol. 1936, : Math. Biosci. Subser., Springer, Berlin (2008) · Zbl 1277.47057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.