×

zbMATH — the first resource for mathematics

A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products: application to shallow flows. (English) Zbl 1388.76169
Summary: The goal of this paper is to construct parallel solvers for 2d hyperbolic systems of conservation laws with source terms and nonconservative products. More precisely, finite volumes solvers on nonstructured grids are considered. The method of lines is applied: at every intercell a projected Riemann problem along the normal direction is considered which is discretized by means of the numerical schemes presented in [the first author et al., M2AN, Math. Model. Numer. Anal. 35, No. 1, 107–127 (2001; Zbl 1094.76046)]. The resulting 2d numerical schemes are explicit and first order accurate. The solver is next parallelized by a domain decomposition technique. The specific application of the scheme to one- and two-layer shallow water systems has been implemented on a PC’s cluster. An efficient data structure based on OOMPI (C++ object oriented extension of MPI) has been developed to optimize the data exchange among the processors. Some numerical tests are next presented to validate the solver and the performance of its parallel implementation. Finally the two-layer shallow water model is applied to the simulation of the steady exchange through the Strait of Gibraltar.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65Y05 Parallel numerical computation
Software:
MPI; OOMPI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armi, L.; Farmer, D., Maximal two-layer exchange through a contraction with barotropic net flow, J. fluid mech., 164, 27-51, (1986) · Zbl 0587.76168
[2] Armi, L.; Farmer, D., The flow of the Mediterranean water through the strait of gibraltar. the flow of the atlantic water through the strait of gibraltar, Prog. oceanogr., 21, 1-105, (1988)
[3] Bermúdez, A.; Vázquez-Cendón, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. fluids, 23, 8, 1049-1071, (1994) · Zbl 0816.76052
[4] Bouchut, F., Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, (2004), Birkhäuser · Zbl 1086.65091
[5] P. Brufau, Simulación bidimensional de flujos hidrodinámicos transitorios en geometrías irregulares, Ph.D. thesis, Universidad de Zaragoza, 2000.
[6] Brufau, P.; Vázquez-Cendón, M.E.; García-Navarro, P., A numerical model for the flooding and drying of irregular domain, Int. J. numer. methods fluids, 39, 247-275, (2002) · Zbl 1094.76538
[7] Bryden, H.; Candela, J.; Kinder, T.H., Exchange through the strait of gibraltar, Prog. oceanogr., 33, 201-248, (1994)
[8] M.J. Castro, A. Ferreiro, J.A. García, J. González-Vida, J. Macías, C. Parés, M.E. Vázquez-Cendón, On the numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layers systems, Math. Comput. Model, to appear. · Zbl 1121.76008
[9] M.J. Castro, J.M. Gallardo, C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow water systems, Math. Comp., accepted for publication. · Zbl 1096.65082
[10] Castro, M.J.; García, J.A.; González-Vida, J.M.; Macías, J.; Parés, C.; Vázquez-Cendón, M.E., Numerical simulation of two-layer shallow water flows through channels with irregular geometry, J. comput. phys., 195, 202-235, (2004) · Zbl 1087.76077
[11] M.J. Castro, J.M. González-Vida, C. Parés, Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme, Math. Model Meth. Appl. Sci., to appear.
[12] Castro, M.J.; Macías, J.; Parés, C., A Q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system, ESAIM: math. model. numer. anal., 35, 1, 107-127, (2001) · Zbl 1094.76046
[13] Chacón, T.; Domínguez, A.; Fernández, E.D., A family of stable numerical solvers for shallow water equations with source terms, Comput. methods appl. mech. engrg., 192, 203-225, (2003) · Zbl 1083.76557
[14] Chacón, T.; Domínguez, A.; Fernández, E.D., An entropy correction free solver for non-homogeneous shallow water equations, ESAIM: math. model. numer. anal., 37, 3, 755-772, (2003) · Zbl 1033.76032
[15] Chacón, T.; Domínguez, A.; Fernández, E.D., Asymptotically balanced schemes for non-homogeneous hyperbolic systems—application to the shallow water equations, C.R. acad. sci. Paris, ser. I, 338, 85-90, (2004) · Zbl 1038.65073
[16] Dal Maso, G.; LeFloch, P.G.; Murat, F., Definition and weak stability of nonconservative products, J. math. pures appl., 74, 483-548, (1995) · Zbl 0853.35068
[17] Dawson, C.; Proft, J., Coupled discontinuous and continuous Galerkin finite element methods for depth-integrated shallow water equations, Comput. methods appl. mech. engrg., 193, 3-5, 289-318, (2004) · Zbl 1075.76570
[18] E.D. Fernández Nieto, Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras, PhD thesis, Universidad de Sevilla, 2003.
[19] Farmer, D.; Armi, L., Maximal two-layer exchange over a sill and through a combination of a sill and contraction with barotropic flow, J. fluid mech., 164, 53-76, (1986) · Zbl 0587.76169
[20] Gallouet, T.; Herard, J.M.; Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography, Comput. fluids, 32, 4, 479-513, (2003) · Zbl 1084.76540
[21] J.M. González Vida, Desarrollo de esquemas numéricos para el tratamiento de frentes seco-mojado en sistemas de aguas someras, PhD thesis, Universidad de Málaga, 2003.
[22] Harten, A.; Hyman, J.M., Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. comput. phys., 50, 235-269, (1983) · Zbl 0565.65049
[23] B. Hendrikson, R. Leland, The Chaco User’s Guide. Version 2.0, Sandia National Laboratories, Alburquerque, 1995.
[24] P.G. LeFloch, Hyperbolic systems of conservation laws, the theory of classical and nonclassical shock waves, in: ETH Lecture Note Series, Birkauser, 2002.
[25] Parés, C.; Castro, M.J., On the well-balance property of roe’s method for nonconservative hyperbolic systems. applications to shallow-water systems, ESAIM: math. model. numer. anal., 38, 5, 821-852, (2004) · Zbl 1130.76325
[26] J.M. Squyres, Object oriented MPI (OOMPI): A C++ Class Library for MPI, Open Systems Laboratory, Pervasive Technologies Labs. Indiana University, 2003.
[27] Stroustrup, B., The C++ programming language, (1997), Addison-Wesley
[28] Toumi, I., A weak formulation of roe’s approximate Riemann solver, J. comput. phys., 102, 2, 360-373, (1992) · Zbl 0783.65068
[29] M.E. Vázquez-Cendón, Estudio de esquemas descentrados para su aplicación a las leyes de conservación hiperbólicas con términos fuente, PhD thesis, Universidad de Santiago de Compostela, 1994.
[30] Vázquez-Cendón, M.E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. comput. phys., 148, 497-526, (1999) · Zbl 0931.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.