×

zbMATH — the first resource for mathematics

A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. (English) Zbl 1388.76263
Summary: A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D99 Incompressible viscous fluids
Software:
Maya
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, A.D.; Tannehill, C.J.; Pletcher, R.H., Computational fluid mechanics and heat transfer, (1984), Hemisphere Publishing Corporation New York · Zbl 0569.76001
[2] Bagchi, P.; Ha, M.Y.; Balachandar, S., Direct numerical simulation of flow and heat transfer from a sphere in a uniform cross flow, J. fluids eng., 123, 347-358, (2001)
[3] Balaras, E., Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Comput. fluids, 33, 375-404, (2004) · Zbl 1088.76018
[4] M. Bozkurttas, H. Dong, V. Seshadri, R. Mittal, F. Najjar, Towards numerical simulation of flapping foils on fixed Cartesian grids, AIAA Paper 2005-0081, 2005.
[5] M. Bozkurttas, Hydrodynamic Performance of Fish Pectoral Fins with Application to Autonomous Underwater Vehicles, D.Sc. Thesis, Department of Mechanical and Aerospace Engineering, The George Washington University, 2007.
[6] Borouchaki, H.; Lo, S.H., Fast Delaunay triangulation in three dimensions, Comput. methods appl. mech. eng., 128, 153-167, (1995) · Zbl 0859.65149
[7] Canann, S.A.; Liu, Y.C.; Mobley, A.V., Automatic 3D surface meshing to address today’s industrial needs, Finite elem. anal. des., 25, 185-198, (1997) · Zbl 0917.73062
[8] Clift, R.; Grace, J.R.; Weber, M.E., Bubbles drops and particles, (1978), Academic Press New York
[9] Cheng, R.K.C., Inside rhinoceros 3, (2003), Onward Press
[10] Derakhshani, D., Introducing maya 8: 3D for beginners, (2006), Maya Press
[11] Fadlun, E.A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed boundary finite-difference methods for three-dimensional complex flow simulations, J. comput. phys., 161, 35-60, (2000) · Zbl 0972.76073
[12] Felten, F.N.; Lund, T.S., Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow, J. comput. phys., 215, 2, 465-484, (2000) · Zbl 1173.76382
[13] R. Ghias, R. Mittal, T.S. Lund, A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries, AIAA Paper 2004-0080, 2004.
[14] Ghias, R.; Mittal, R.; Dong, H., A sharp interface immersed boundary method for viscous compressible flows, J. comput. phys., 225, 528-553, (2007) · Zbl 1343.76043
[15] Gibou, F.; Fedkiw, R.J.; Cheng, L.T.; Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J. comput. phys., 176, 205-227, (2002) · Zbl 0996.65108
[16] Goldstein, D.; Handler, R.; Sirovich, L., Modeling an no-slip flow boundary with an external force field, J. comput. phys., 105, 354-366, (1993) · Zbl 0768.76049
[17] Henderson, R.D., Details of the drag curve near the onset of vortex shedding, Phys. fluids, 7, 9, 2102-2104, (1995)
[18] Johnson, T.A.; Patel, V.C., Flow past a sphere up to a Reynolds number of 300, J. fluid mech., 378, 19-70, (1999)
[19] Kim, J.; Kim, D.; Choi, H., An immersed boundary finite-volume method for simulations of flows in complex geometries, J. comput. phys., 171, 132-150, (2001) · Zbl 1057.76039
[20] Koumoutsakos, P.; Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. fluid mech., 296, 1-38, (1995) · Zbl 0849.76061
[21] Koumoutsakos, P.; Shiels, D., Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, J. fluid mech., 328, 177-227, (1996) · Zbl 0890.76061
[22] P.J. Kunz, H. Kroo, Analysis and design of airfoils for use at ultra-low Reynolds numbers, in: T.J. Mueller (Ed.), Progress in Astronautics and Aeronautics, 2001, p. 35.
[23] Lai, M.C.; Peskin, C.S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. comput. phys., 160, 705-719, (2000) · Zbl 0954.76066
[24] Lauder, G.V.; Madden, P.; Mittal, R.; Dong, H.; Bozkurttas, M., Locomotion with flexible propulsors: I. experimental analysis of pectoral fin swimming in sunfish, Bioinsp. biomim., 1, S25-S34, (2006)
[25] Majumdar, S.; Iaccarino, G.; Durbin, P.A., RANS solver with adaptive structured boundary non-conforming grids, Cent. turbul. res. annu. res. briefs, 353, (2001)
[26] Marella, S.; Krishnan, S.; Liu, H.; Udaykumar, H.S., Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations, J. comput. phys., 210, 1-31, (2005) · Zbl 1154.76359
[27] Mavriplis, D.J., An advancing front Delaunay triangulation algorithm designed for robustness, J. comput. phys., 117, 1, 90-101, (1995) · Zbl 0815.68121
[28] D.J. Mavriplis, V. Venkatakrishnan A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes, AIAA-1995-345, 1995.
[29] Mittal, R.; Balachandar, S., Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinder, Phys. fluids, 7, 8, 1841-1865, (1995) · Zbl 1032.76530
[30] R. Mittal, S. Balachandar, On the inclusion of three-dimensional effects in simulations of two-dimensional bluff-body wake flows, in: Symposium on Separated and Complex flows, ASME Summer meeting, Vancouver, 1997.
[31] Mittal, R.; Moin, P., Suitability of upwind biased schemes for large-eddy simulation of turbulent flows, Aiaa j., 35, 8, 1415-1417, (1997) · Zbl 0900.76336
[32] Mittal, R., A fourier – chebyshev spectral collocation method for simulating flow past spheres and spheroids, Int. J. numer. meth. fluids, 30, 921-937, (1999) · Zbl 0957.76060
[33] Mittal, R.; Wilson, J.J.; Najjar, F.M., Symmetry properties of the transitional sphere wake, Aiaa j., 40, 3, 579-582, (2002)
[34] Mittal, R.; Iaccarino, G., Immersed boundary methods, Ann. rev. fluid mech., 37, 239-261, (2005) · Zbl 1117.76049
[35] Mittal, R.; Dong, H.; Bozkurttas, M.; Lauder, G.V.; Madden, P., Locomotion with flexible propulsors: II. computational modeling of pectoral fin swimming in sunfish, Bioinsp. biomim., 1, S35-S41, (2006)
[36] Mueller, T.J.; DeLaurier, J.D., Aerodynamics of small vehicles, Ann. rev. fluid mech., 35, 89-111, (2003) · Zbl 1125.76358
[37] Natarajan, R.; Acrivos, A., The instability of the steady flow past spheres and disks, J. fluid mech., 254, 323-344, (1993) · Zbl 0780.76027
[38] Norberg, R.A., Hovering flight of the dragonfly aeschna juncea L kinematics and aerodynamics, (), 763
[39] Ormieres, D.; Provansal, M., Transition to turbulence in the wake of a sphere, Phys. rev. lett., 83, 1, 80-83, (1999)
[40] Fedkiw, S. Osher R.P., Level set methods – an overview and some recent results, J. comput. phys., 169, 463-502, (2001) · Zbl 0988.65093
[41] Peskin, C.S., Flow patterns around the heart valves, J. comput. phys., 10, 252-271, (1972) · Zbl 0244.92002
[42] Piegl, L., On NURBS: a survey, IEEE comput. graphics appl., 11, 55, (1991)
[43] Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T., Numerical recipes in Fortran, (1992), Cambridge University Press · Zbl 0778.65002
[44] Ramamurti, R.; Sandberg, W.C.; Lohner, R.; Walker, J.A.; Westneat, M.W., Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation, J. exp. biol., 205, 2997-3008, (2002)
[45] Ruge, J.W.; Stueben, K., Multigrid methods, (1987), Society for Industrial and Applied Mathematics Philadelhia, PA
[46] Stuben, K., A review of algebraic multigrid, J. comput. appl. math., 128, 281-309, (2001) · Zbl 0979.65111
[47] Saiki, E.M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. comput. phys, 123, 450-465, (1996) · Zbl 0848.76052
[48] Sakamoto, H.; Haniu, H., The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow, J. fluid mech., 287, 151-171, (1995)
[49] Soria, J.; Cantwell, B.J., Identification and classification of topological structures in free shear flows, () · Zbl 0823.76039
[50] Taneda, S., Experimental investigation of the wake behind a sphere at low Reynolds numbers, J. phys. soc. jpn., 11, 10, 1104-1108, (1956)
[51] Taneda, S.; Honji, H., Unsteady flow past a flat plate normal to the direction of motion, J. phys. soc. jpn., 30, 1, 262-272, (1971)
[52] Tseng, Y-H; Ferziger, J.H., A ghost-cell immersed boundary method for flow in complex geometry, J. comput. phys., 192, 593-623, (2003) · Zbl 1047.76575
[53] Udaykumar, H.S.; Shyy, W.; Rao, M.M., Elafint: a mixed eulerian – lagrangian method for fluid flows with complex and moving boundaries, Int. J. numer. methods fluids, 22, 691-712, (1996) · Zbl 0887.76059
[54] Udaykumar, H.S.; Mittal, R.; Shyy, W., Computational of solid – liquid phase fronts in the sharp interface limit on fixed grids, J. comput. phys., 153, 535-574, (1999) · Zbl 0953.76071
[55] Udaykumar, H.S.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. comput. phys., 174, 345-380, (2001) · Zbl 1106.76428
[56] Van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. sci. stat. comput., 7, 870-891, (1986) · Zbl 0594.76023
[57] A. Vargas, A Numerical Investigation of the Aerodynamic Characteristics of a Dragonfly Wing Section, D.Sc. Thesis, Department of Mechanical and Aerospace Engineering, The George Washington University, 2006.
[58] Wakeling, J.M.; Ellington, C.P., Dragonfly flight (2). velocities, accelerations and kinematics of flapping flight, J. exp. biol., 200, 557-582, (1997)
[59] Wang, J.K.; Sun, M., A computational study of the aerodynamics and forewing – hindwing interaction of a model dragonfly in forward flight, J. exp. biol., 208, 3785-3804, (2005)
[60] Williamson, C.H.K.; Roshko, A., Measurement of base pressure in the wake of a cylinder at low Reynolds numbers, Z. flugwiss. weltraumforsch, 14, 38, (1990)
[61] Williamson, C.H.K., The natural and forced formation of spot-like’ vortex dislocations’ in the transition of a wake, J. fluid mech., 243, 393-441, (1992)
[62] Williamson, C.H.K., Vortex dynamics in the cylinder wake, Ann. rev. fluid mech., 8, 477-539, (1996) · Zbl 0899.76129
[63] Ye, T.; Mittal, R.; Udaykumar, H.S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. comput. phys., 156, 209-240, (1999) · Zbl 0957.76043
[64] D. You, M. Wang, R. Mittal, P. Moin, Study of rotor tip-clearance flow using large eddy simulation, AIAA Paper 2003-0838, 2003.
[65] Zang, Y.; Streett, R.L.; Koseff, J.R., A non-staggered fractional step method for time-dependent incompressible navier – stokes equations in curvilinear coordinates, J. comput. phys., 114, 18-33, (1994) · Zbl 0809.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.