×

A planar four-loop form factor and cusp anomalous dimension in QCD. (English) Zbl 1388.81989

Summary: We compute the fermionic contribution to the photon-quark form factor to four-loop order in QCD in the planar limit in analytic form. From the divergent part of the latter the cusp and collinear anomalous dimensions are extracted. Results are also presented for the finite contribution. We briefly describe our method to compute all planar master integrals at four-loop order.

MSC:

81V35 Nuclear physics

Software:

LiteRed; FORM; HPL; FIRE5; FIRE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev.D 20 (1979) 2037 [INSPIRE].
[2] J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev.D 22 (1980) 1478 [INSPIRE].
[3] A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev.D 24 (1981) 3281 [INSPIRE].
[4] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev.D 42 (1990) 4222 [INSPIRE].
[5] I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett.B 287 (1992) 169 [INSPIRE]. · doi:10.1016/0370-2693(92)91895-G
[6] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.B 552 (2003) 48 [hep-ph/0210130] [INSPIRE]. · Zbl 1005.81519 · doi:10.1016/S0370-2693(02)03100-3
[7] G. Kramer and B. Lampe, Two Jet Cross-Section in e+e−Annihilation, Z. Phys.C 34 (1987) 497 [Erratum ibid.C 42 (1989) 504] [INSPIRE].
[8] T. Matsuura and W.L. van Neerven, Second Order Logarithmic Corrections to the Drell-Yan Cross-section, Z. Phys.C 38 (1988) 623 [INSPIRE].
[9] T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys.B 319 (1989) 570 [INSPIRE]. · doi:10.1016/0550-3213(89)90620-2
[10] T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett.B 622 (2005) 295 [hep-ph/0507061] [INSPIRE]. · doi:10.1016/j.physletb.2005.07.019
[11] P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett.102 (2009) 212002 [arXiv:0902.3519] [INSPIRE]. · doi:10.1103/PhysRevLett.102.212002
[12] T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP06 (2010) 094 [arXiv:1004.3653] [INSPIRE]. · Zbl 1288.81146 · doi:10.1007/JHEP06(2010)094
[13] R.N. Lee and V.A. Smirnov, Analytic ϵ-expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight, JHEP02 (2011) 102 [arXiv:1010.1334] [INSPIRE]. · Zbl 1294.81290 · doi:10.1007/JHEP02(2011)102
[14] T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to O(ϵ2), JHEP11 (2010) 102 [arXiv:1010.4478] [INSPIRE]. · Zbl 1294.81279 · doi:10.1007/JHEP11(2010)102
[15] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE]. · doi:10.1016/0550-3213(81)90199-1
[16] A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP10 (2008) 107 [arXiv:0807.3243] [INSPIRE]. · Zbl 1245.81033 · doi:10.1088/1126-6708/2008/10/107
[17] A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun.184 (2013) 2820 [arXiv:1302.5885] [INSPIRE]. · Zbl 1344.81031 · doi:10.1016/j.cpc.2013.06.016
[18] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun.189 (2015) 182 [arXiv:1408.2372] [INSPIRE]. · Zbl 1344.81030 · doi:10.1016/j.cpc.2014.11.024
[19] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP03 (2014) 088 [arXiv:1312.2588] [INSPIRE]. · doi:10.1007/JHEP03(2014)088
[20] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE]. · doi:10.1016/0370-2693(91)90413-K
[21] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE]. · Zbl 1007.81512 · doi:10.1016/0550-3213(94)90398-0
[22] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim.A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
[23] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[24] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE]. · doi:10.1103/PhysRevLett.110.251601
[25] F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
[26] T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor \[inN=4 \mathcal{N}=4\] super Yang-Mills, JHEP03 (2012) 101 [arXiv:1112.4524] [INSPIRE]. · Zbl 1309.81159 · doi:10.1007/JHEP03(2012)101
[27] R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic Duality for Form Factors, JHEP02 (2013) 063 [arXiv:1211.7028] [INSPIRE]. · Zbl 1342.81551 · doi:10.1007/JHEP02(2013)063
[28] R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys.B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE]. · Zbl 1332.81126 · doi:10.1016/j.nuclphysb.2015.11.016
[29] A. von Manteuffel, E. Panzer and R.M. Schabinger, On the Computation of Form Factors in Massless QCD with Finite Master Integrals, arXiv:1510.06758 [INSPIRE]. · Zbl 1388.81378
[30] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE]. · Zbl 0782.68091 · doi:10.1006/jcph.1993.1074
[31] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
[32] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE]. · Zbl 1317.68286 · doi:10.1016/j.cpc.2012.12.028
[33] R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections ofOααs \[\mathcal{O}\left(\alpha{\alpha}_s\right)\] to the decay of the Z boson into bottom quarks, Phys. Lett.B 426 (1998) 125 [hep-ph/9712228] [INSPIRE]. · doi:10.1016/S0370-2693(98)00220-2
[34] T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].
[35] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[36] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE]. · doi:10.1088/1742-6596/523/1/012059
[37] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP06 (2009) 081 [Erratum ibid.11 (2013) 024] [arXiv:0903.1126] [INSPIRE]. · Zbl 1342.81350
[38] A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep inelastic scattering and the Drell-Yan process, Phys. Lett.B 497 (2001) 228 [hep-ph/0010146] [INSPIRE]. · doi:10.1016/S0370-2693(00)01344-7
[39] C.F. Berger, Higher orders in A(αs)/[1 − x]+of nonsinglet partonic splitting functions, Phys. Rev.D 66 (2002) 116002 [hep-ph/0209107] [INSPIRE].
[40] S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys.B 688 (2004) 101 [hep-ph/0403192] [INSPIRE]. · Zbl 1149.81371 · doi:10.1016/j.nuclphysb.2004.03.030
[41] S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett.B 625 (2005) 245 [hep-ph/0508055] [INSPIRE]. · doi:10.1016/j.physletb.2005.08.067
[42] J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at O(1/Nf) in deep inelastic scattering, Phys. Lett.B 322 (1994) 141 [hep-ph/9401214] [INSPIRE]. · doi:10.1016/0370-2693(94)90502-9
[43] M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys.B 454 (1995) 253 [hep-ph/9506452] [INSPIRE]. · doi:10.1016/0550-3213(95)00439-Y
[44] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP06 (2012) 125 [arXiv:1012.6032] [INSPIRE]. · Zbl 1214.81181 · doi:10.1007/JHEP06(2012)125
[45] A.E. Lipstein and L. Mason, From the holomorphic Wilson loop to ‘d log’ loop-integrands for super-Yang-Mills amplitudes, JHEP05 (2013) 106 [arXiv:1212.6228] [INSPIRE]. · Zbl 1342.81216 · doi:10.1007/JHEP05(2013)106
[46] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, Cambridge University Press (2016), arXiv:1212.5605.
[47] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity Structure of Maximally Supersymmetric Scattering Amplitudes, Phys. Rev. Lett.113 (2014) 261603 [arXiv:1410.0354] [INSPIRE]. · Zbl 1397.81428 · doi:10.1103/PhysRevLett.113.261603
[48] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic Singularities and Maximally Supersymmetric Amplitudes, JHEP06 (2015) 202 [arXiv:1412.8584] [INSPIRE]. · Zbl 1388.81136 · doi:10.1007/JHEP06(2015)202
[49] F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP09 (2014) 043 [arXiv:1404.5590] [INSPIRE]. · doi:10.1007/JHEP09(2014)043
[50] O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev.D 54 (1996) 6479 [hep-th/9606018] [INSPIRE]. · Zbl 0925.81121
[51] R.N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys.B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE]. · Zbl 1203.83051 · doi:10.1016/j.nuclphysb.2009.12.025
[52] J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys.A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE]. · Zbl 1312.81078
[53] D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE]. · Zbl 1196.68330 · doi:10.1016/j.cpc.2005.10.008
[54] V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys.250 (2012) 1. · Zbl 1268.81004 · doi:10.1007/978-3-642-34886-0_1
[55] P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys.B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE]. · Zbl 1206.81087 · doi:10.1016/j.nuclphysb.2010.05.004
[56] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys.B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE]. · Zbl 1246.81057 · doi:10.1016/j.nuclphysb.2011.11.005
[57] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. Thesis, Humboldt U., Berlin, Inst. Math. (2015), arXiv:1506.07243 [INSPIRE]. · Zbl 1344.81024
[58] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003 · doi:10.1142/S0217751X00000367
[59] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York, London, Sydney (1965). · Zbl 0133.35301
[60] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE]. · doi:10.1016/S0550-3213(98)00138-2
[61] V.A. Smirnov and E.R. Rakhmetov, The strategy of regions for asymptotic expansion of two loop vertex Feynman diagrams, Theor. Math. Phys.120 (1999) 870 [hep-ph/9812529] [INSPIRE]. · Zbl 0964.81053 · doi:10.1007/BF02557396
[62] V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys.177 (2002) 1. · Zbl 1025.81002 · doi:10.1007/3-540-44574-9_1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.