×

zbMATH — the first resource for mathematics

The local-global principle for symmetric determinantal representations of smooth plane curves. (English) Zbl 1390.14086
Let \(C\subset {\mathbb P}_K^2\) be a smooth plane curve of degree \(n\geq 1\) over a field \(K\). We say that \(C\) admits a symmetric determinantal representation over \(K\) if there exists a triple of symmetric matrices \((M_0,M_1,M_1)\) of size \(n\) with entries in \(K\) such that \(C\) is defined by the equation \[ \det (X_0,N_0+X_1M_1+X_2M_2) = 0\, . \]
The paper studies the local-global principle for the existence of symmetric determinantal representations of smooth plane curves defined over a global field \(K\) with \(\text{char}\, K\neq 2\).
The main results of the paper are the following: \smallskip
{Theorem 1.} Let \(K\) be a global field of characteristic different from two, and let \(C\subset {\mathbb P}_K^2\) be a smooth plane curve of degree 2 or 3. If \(C\) admits a symmetric determinantal representation over the completion \(K_v\) for each place \(v\) of \(K\), then \(C\) admits a symmetric determinantal representation over \(A\). \smallskip
{Theorem 2.} Let \(K\) be a global field of characteristic different from two, and let \(C\subset {\mathbb P}_K^2\) be a smooth plane curve of degree 4. Assume that the associated mod 2 Galois representation on the 2-torsion points on the Jacobian variety \(\text{Jac(C)}\) \[ \rho_{C,2}\, :\, \text{Gal}(K^{\text{sep}}/K) \to \text{Sp} (\text{Jac}(C)[2](K^{\text{sep}}) \cong \text{Sp}_6({\mathbb F}_2) \] is surjective. The there is a finite extension \(L/K\) such that \(C\) admits a symmetric determinantal representation over \(L_w\) for each place \(w\) of \(L\) but not over \(L\). \smallskip
The proof of Theorem 1 relies on the existence of a \(K\)-rational point on the conic for \(n=2\), and of a non-trivial \(K\)-rational 2-torsion point on the Jacobian variety of the curve for \(m=3\).
The proof of Theorem 2 makes use of a group-theoetic lemma on the action of the subgroups of \(\text{Sp}({\mathbb F}_2)\) on quadratic forms over \({\mathbb F}_2\).

MSC:
14H50 Plane and space curves
11D41 Higher degree equations; Fermat’s equation
14K30 Picard schemes, higher Jacobians
14K15 Arithmetic ground fields for abelian varieties
14F22 Brauer groups of schemes
PDF BibTeX Cite
Full Text: DOI
References:
[1] Beauville, A, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4), 10, 309-391, (1977) · Zbl 0368.14018
[2] Beauville, A, Determinantal hypersurfaces, Michigan Math. J., 48, 39-64, (2000) · Zbl 1076.14534
[3] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, p. 21. Springer, Berlin (1990)
[4] Bruin, N.: Success and challenges in determining the rational points on curves. In: Proceedings of the Tenth Algorithmic Number Theory Symposium. The Open Book Series, vol. 1.1, pp. 187-212 (2013) · Zbl 1344.11048
[5] Bruin, N., Poonen, B., Stoll, M.: Generalized explicit descent and its application to curves of genus 3. arXiv:1205.4456 · Zbl 1408.11065
[6] Catanese, F, Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math., 63, 433-465, (1981) · Zbl 0472.14024
[7] Cook, RJ; Thomas, AD, Line bundles and homogeneous matrices, Q. J. Math. Oxf. Ser. (2), 30, 423-429, (1979) · Zbl 0437.14004
[8] Dixon, AC, Note on the reduction of a ternary quantic to a symmetric determinant, Proc. Camb. Philos. Soc., 11, 350-351, (1902) · JFM 33.0140.04
[9] Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996) · Zbl 0951.20001
[10] Dye, RH, Interrelations of symplectic and orthogonal groups in characteristic two, J. Algebra, 59, 202-221, (1979) · Zbl 0409.20033
[11] Dolgachev, I.V.: Classical Algebraic Geometry—A Modern View. Cambridge University Press, Cambridge (2012) · Zbl 1252.14001
[12] Edge, WL, Determinantal representations of \(x^4 + y^4 + z^4\), Math. Proc. Camb. Philos. Soc., 34, 6-21, (1938) · Zbl 0018.10003
[13] Fried, M.D., Jarden, M.: Field arithmetic. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 3rd edn, vol. 11. Springer, Berlin (2008) · Zbl 1145.12001
[14] Gross, B.H., Harris, J.: On Some Geometric Constructions Related to Theta Characteristics. Contributions to Automorphic Forms, Geometry, and Number Theory, vol. 279-311. Johns Hopkins University Press, Baltimore, MD (2004) · Zbl 1072.14032
[15] Grothendieck, A.: Le, groupe de Brauer III. Dix Exposés sur la Cohomologie des Schémas, North-Holland, pp. 88-188. Amsterdam, Masson, Paris (1968)
[16] Harris, J, Galois groups of enumerative problems, Duke Math. J., 46, 685-724, (1979) · Zbl 0433.14040
[17] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) · Zbl 0367.14001
[18] Hesse, O, Über elimination der variabeln aus drei algebraischen gleichungen von zweiten graden, mit zwei variabeln, J. Reine Angew. Math., 28, 68-96, (1844) · ERAM 028.0817cj
[19] Hesse, O, Über die doppeltangenten der curven vierter ordnung, J. Reine Angew. Math., 49, 279-332, (1855) · ERAM 049.1317cj
[20] Ho, W.: Orbit parametrizations of curves. Ph.D. Thesis, Princeton University (2009) · Zbl 0368.14018
[21] Ishitsuka, Y.: Orbit parametrizations of theta characteristics on hypersurfaces over arbitrary fields. arXiv:1412.6978
[22] Ishitsuka, Y., Ito, T.: The local-global principle for symmetric determinantal representations of smooth plane curves in characteristic two. arXiv:1412.8343 · Zbl 1368.14046
[23] Ishitsuka, Y., Ito, T., On the symmetric determinantal representations of the Fermat curves of prime degree. arXiv:1412.8345. To appear in Int. J. Number Theory · Zbl 1415.11062
[24] Jouanolou, J.-P.: Théorèmes de Bertini et Applications. Progress in Mathematics, vol. 42. Birkhäuser Boston Inc, Boston (1983) · Zbl 0519.14002
[25] Kleiman, S.L.: The Picard Scheme, Fundamental Algebraic Geometry. Mathematical Surveys Monographs, vol. 123. American Mathematical Society, Providence (2005)
[26] Liu, Q.: Algebraic Geometry and Arithmetic Curves. Translated from the French by Reinie Erné. Oxford Graduate Texts in Mathematics, vol. 6. Oxford Science Publications, Oxford University Press, Oxford (2002) · Zbl 0339.14020
[27] Meyer-Brandis, T.: Berührungssysteme und symmetrische Darstellungen ebener Kurven. Diplomarbeit, Johannes Gutenberg-Universität Mainz, Mainz (1998)
[28] Mumford, D, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4), 4, 181-192, (1971) · Zbl 0216.05904
[29] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathematischen Wissenschaften, vol. 323, 2nd edn. Springer, Berlin (2008) · Zbl 1136.11001
[30] Room, T.G.: The Geometry of Determinantal Loci. Cambridge University Press, Cambridge (1938) · Zbl 0020.05402
[31] Serre, J.-P.: Abelian \(ℓ \)-adic representations and elliptic curves. McGill University Lecture Notes Written with the Collaboration of Willem Kuyk and John Labute W. A. Benjamin, Inc., New York (1968)
[32] Serre, J.-P.: Local Fields. Graduate Texts in Mathematics, vol. 67. Springer, New York (1979)
[33] Shioda, T, Plane quartics and Mordell-Weil lattices of type \(E_7\), Comment. Math. Univ. St. Paul., 42, 61-79, (1993) · Zbl 0790.14025
[34] Tate, J.T.: Global class field theory. In: Cassels, J.W.S., Fröhlich, A. (eds.) Algebraic Number Theory. Proceedings of the Instructional Conference, Brighton pp. 162-203 (1965) · Zbl 1179.11041
[35] Tyurin, AN, On intersection of quadrics, Russ. Math. Surv., 30, 51-105, (1975) · Zbl 0339.14020
[36] Vinnikov, V, Complete description of determinantal representations of smooth irreducible curves, Linear Algebra Appl., 125, 103-140, (1989) · Zbl 0704.14041
[37] Vinnikov, V, Self-adjoint determinantal representations of real plane curves, Math. Ann., 296, 453-479, (1993) · Zbl 0789.14029
[38] Wall, CTC, Nets of quadrics and theta-characteristics of singular curves, Philos. Trans. R. Soc. Lond. Ser. A, 239, 229-269, (1978) · Zbl 0382.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.