×

zbMATH — the first resource for mathematics

Gram spectrahedra. (English) Zbl 1390.14176
Broglia, Fabrizio (ed.) et al., Ordered algebraic structures and related topics. International conference at CIRM, Luminy, France, October 12–16, 2015. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2966-9/pbk; 978-1-4704-4222-4/ebook). Contemporary Mathematics 697, 81-105 (2017).
Summary: Representations of nonnegative polynomials as sums of squares are central to real algebraic geometry and the subject of active research. The sum-of-squares representations of a given polynomial are parametrized by the convex body of positive semidefinite Gram matrices, called the Gram spectrahedron. This is a fundamental object in polynomial optimization and convex algebraic geometry. We summarize results on sums of squares that fit naturally into the context of Gram spectrahedra, present some new results, and highlight related open questions. We discuss sum-of-squares representations of minimal length and relate them to Hermitian Gram spectrahedra and point evaluations on toric varieties.
For the entire collection see [Zbl 1375.00094].

MSC:
14P10 Semialgebraic sets and related spaces
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Anghel, Nicolae, Clifford matrices and a problem of Hurwitz, Linear and Multilinear Algebra, 47, 2, 105-117 (2000) · Zbl 0952.11007
[2] Barvinok, A., A remark on the rank of positive semidefinite matrices subject to affine constraints, Discrete Comput. Geom., 25, 1, 23-31 (2001) · Zbl 0969.90096
[3] Batyrev, Victor; Juny, Dorothee, Classification of Gorenstein toric del Pezzo varieties in arbitrary dimension, Mosc. Math. J., 10, 2, 285-316, 478 (2010) · Zbl 1235.14043
[4] Blekherman, Grigoriy, Nonnegative polynomials and sums of squares, J. Amer. Math. Soc., 25, 3, 617-635 (2012) · Zbl 1258.14067
[5] Semidefinite optimization and convex algebraic geometry, MOS-SIAM Series on Optimization 13, xx+476 pp. (2013), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA · Zbl 1260.90006
[6] G. Blekherman, D. Plaumann, R. Sinn, and C. Vinzant. Low-rank sum-of-squares representations on varieties of minimal degree, Preprint, arXiv:1606.04387, 2016. · Zbl 1439.14167
[7] Blekherman, Grigoriy; Smith, Gregory G.; Velasco, Mauricio, Sums of squares and varieties of minimal degree, J. Amer. Math. Soc., 29, 3, 893-913 (2016) · Zbl 1388.14156
[8] Brodmann, Markus; Schenzel, Peter, Arithmetic properties of projective varieties of almost minimal degree, J. Algebraic Geom., 16, 2, 347-400 (2007) · Zbl 1126.14054
[9] Choi, M. D.; Lam, T. Y.; Reznick, B., Sums of squares of real polynomials. \(K\)-theory and algebraic geometry: connections with quadratic forms and division algebras, Santa Barbara, CA, 1992, Proc. Sympos. Pure Math. 58, 103-126 (1995), Amer. Math. Soc., Providence, RI · Zbl 0821.11028
[10] Coble, Arthur B., Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications 10, vii+282 pp. (1982), American Mathematical Society, Providence, R.I.
[11] Cox, David A.; Little, John B.; Schenck, Henry K., Toric varieties, Graduate Studies in Mathematics 124, xxiv+841 pp. (2011), American Mathematical Society, Providence, RI · Zbl 1223.14001
[12] Eisenbud, David; Harris, Joe, On varieties of minimal degree (a centennial account). Algebraic geometry, Bowdoin, 1985, Brunswick, Maine, 1985, Proc. Sympos. Pure Math. 46, 3-13 (1987), Amer. Math. Soc., Providence, RI
[13] Graf von Bothmer, Hans-Christian; Ranestad, Kristian, A general formula for the algebraic degree in semidefinite programming, Bull. Lond. Math. Soc., 41, 2, 193-197 (2009) · Zbl 1185.14047
[14] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, Wiley Classics Library, xiv+813 pp. (1994), John Wiley & Sons, Inc., New York · Zbl 0836.14001
[15] D. Henrion, S. Naldi, and M. Safey El Din. Exact algorithms for linear matrix inequalities. Preprint, arXiv:1508.03715, 2015. · Zbl 1356.90102
[16] Hilbert, David, Ueber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32, 3, 342-350 (1888) · JFM 20.0198.02
[17] Hrube\v s, Pavel; Wigderson, Avi; Yehudayoff, Amir, Non-commutative circuits and the sum-of-squares problem, J. Amer. Math. Soc., 24, 3, 871-898 (2011) · Zbl 1225.03049
[18] Hurwitz, A., \`“Uber die Komposition der quadratischen Formen, Math. Ann., 88, 1-2, 1-25 (1922) · JFM 48.1164.03
[19] James, I. M., On the immersion problem for real projective spaces, Bull. Amer. Math. Soc., 69, 231-238 (1963) · Zbl 0119.18802
[20] Lam, Kee Yuen, Some new results on composition of quadratic forms, Invent. Math., 79, 3, 467-474 (1985) · Zbl 0559.10014
[21] Lam, K. Y.; Yiu, P. Y. H., Geometry of normed bilinear maps and the \(16\)-square problem, Math. Ann., 284, 3, 437-447 (1989) · Zbl 0649.10015
[22] Lam, T. Y., Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67, xxii+550 pp. (2005), American Mathematical Society, Providence, RI · Zbl 1068.11023
[23] Marshall, Murray, Positive polynomials and sums of squares, Mathematical Surveys and Monographs 146, xii+187 pp. (2008), American Mathematical Society, Providence, RI · Zbl 1169.13001
[24] Nie, Jiawang; Ranestad, Kristian; Sturmfels, Bernd, The algebraic degree of semidefinite programming, Math. Program., 122, 2, Ser. A, 379-405 (2010) · Zbl 1184.90119
[25] Ottem, John Christian; Ranestad, Kristian; Sturmfels, Bernd; Vinzant, Cynthia, Quartic spectrahedra, Math. Program., 151, 2, Ser. B, 585-612 (2015) · Zbl 1328.14091
[26] Plaumann, Daniel; Sturmfels, Bernd; Vinzant, Cynthia, Quartic curves and their bitangents, J. Symbolic Comput., 46, 6, 712-733 (2011) · Zbl 1214.14049
[27] Powers, Victoria; Reznick, Bruce, Notes towards a constructive proof of Hilbert’s theorem on ternary quartics. Quadratic forms and their applications, Dublin, 1999, Contemp. Math. 272, 209-227 (2000), Amer. Math. Soc., Providence, RI · Zbl 1026.11044
[28] Powers, Victoria; Reznick, Bruce; Scheiderer, Claus; Sottile, Frank, A new approach to Hilbert’s theorem on ternary quartics, C. R. Math. Acad. Sci. Paris, 339, 9, 617-620 (2004) · Zbl 1061.11016
[29] Prestel, Alexander; Delzell, Charles N., Positive polynomials, Springer Monographs in Mathematics, viii+267 pp. (2001), Springer-Verlag, Berlin · Zbl 0987.13016
[30] Radon, J., Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg, 1, 1, 1-14 (1922) · JFM 48.0092.06
[31] Reznick, Bruce, Forms derived from the arithmetic-geometric inequality, Math. Ann., 283, 3, 431-464 (1989) · Zbl 0637.10015
[32] B. Reznick. On Hilbert’s construction of positive polynomials, Preprint, arXiv:0707.2156, 2007.
[33] Rostalski, Philipp; Sturmfels, Bernd, Dualities. Semidefinite optimization and convex algebraic geometry, MOS-SIAM Ser. Optim. 13, 203-249 (2013), SIAM, Philadelphia, PA · Zbl 1360.90195
[34] Scheiderer, Claus, Positivity and sums of squares: a guide to recent results. Emerging applications of algebraic geometry, IMA Vol. Math. Appl. 149, 271-324 (2009), Springer, New York · Zbl 1156.14328
[35] Scheiderer, Claus, Sums of squares of polynomials with rational coefficients, J. Eur. Math. Soc. (JEMS), 18, 7, 1495-1513 (2016) · Zbl 1354.14036
[36] C. Scheiderer. Sum of squares length of real forms. Preprint, arXiv:1603.05430, 2016. · Zbl 1420.11070
[37] M. Schweighofer. Algorithmische Beweise fur Nichtnegativ- und Positivstellensatze, Diplomarbeit, available (in German) at http://www.math.uni-konstanz.de/ schweigh/publications.html, 1999.
[38] Shapiro, Daniel B., Products of sums of squares, Exposition. Math., 2, 3, 235-261 (1984) · Zbl 0541.10025
[39] Handbook of semidefinite programming, International Series in Operations Research & Management Science 27, xxviii+654 pp. (2000), Kluwer Academic Publishers, Boston, MA
[40] Zak, F. L., Projective invariants of quadratic embeddings, Math. Ann., 313, 3, 507-545 (1999) · Zbl 0919.14032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.